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Sleep-disordered breathing (SDB) encompasses upper airway dysfunction during sleep caused by increased upper airway resistance 
and pharyngeal collapsibility. It is estimated that SDB affects up to 4% of children worldwide. Paediatric obstructive sleep apnoea (OSA) 
is characterized by periods of apnoea and hypopnoea and is diagnosed using overnight polysomnography. The first-line treatment for 

OSA in most children is adenotonsillectomy. However, those with persistent OSA require additional therapies. Hypoglossal nerve stimulation 
(HGNS) has been shown to be safe and effective in appropriate patients with OSA, where stimulation of the genioglossus maintains airway 
patency during sleep. This article aims to explore the literature on paediatric OSA management, and new utilization of HGNS.

Paediatric sleep-disordered breathing
Sleep-disordered breathing (SDB) is defined as the disruption of normal respiration and ventilation 

while asleep.1 SDB encompasses multiple sleep disturbances, ranging from mild snoring to 

obstructive sleep apnoea (OSA).1,2 OSA is characterized by episodic partial or complete obstruction 

of the upper airway, with associated desaturations, awakenings or arousals from sleep.3 Common 

symptoms include snoring, nocturnal gasping, witnessed apnoeas and daytime somnolence.4,5 

OSA affects 1–4% of children worldwide, with incidence increasing over time.6–8 When untreated, 

paediatric OSA is known to negatively affect outcomes and quality of life.9 OSA has been linked 

with neurocognitive and behavioural disturbances in paediatric patients, including learning 

difficulties, attention disorders, poor school performance, hyperactivity, aggression, moodiness 

and antisocial behaviours.10–14 Paediatric OSA may also be associated with cardiovascular disease 

and hypertension.1,8,15–17

Evaluation and diagnosis of paediatric obstructive sleep apnoea
The gold standard for the diagnosis of OSA in children is in-laboratory overnight polysomnography 

(PSG).3 However, current research efforts are in place to determine the efficacy of less invasive, 

more readily accessible diagnostic methods in the paediatric population.2,18 The American 

Academy of Sleep Medicine defines paediatric obstructive apnoea events as a reduction in 

peak airflow by ≥90% of pre-event baseline with an associated respiratory effort.19 A hypopnoea 

event is defined as a decrease in the peak signal by ≥30% from baseline nasal pressure for at 

least two breaths in association with either a ≥3% oxygen desaturation or an arousal.19 OSA is 

diagnosed using the apnoea–hypopnoea index (AHI), which is the average number of apnoeas 

and hypopnoeas per hour of sleep.19 The most commonly accepted definition of OSA severity is 

mild OSA corresponds to an AHI ≥1 and <5, moderate with an AHI of 5–10 and severe with an AHI 

of ≥10.3,8,20

Pathophysiology
Lymphoid tissue in Waldeyer’s ring serves as part of the immune system, positioned in the 

oropharynx and nasopharynx to initiate immune responses towards antigens entering the 

body.20,21 This tissue is most active between 3 and 10 years of age, leading to an associated peak 

in size during this period with subsequent age-related involution.20,22 To date, there have been no 

studies demonstrating a significant impact on immune function after the removal of the adenoids 

and/or tonsils to manage SDB.23

Certain populations are at a higher risk of developing OSA than others. In the USA, upwards of 

60% of children with obesity have comorbid OSA.24,25 The aetiology of this relationship is likely 

multifactorial, but the co-occurrence of obesity and adenotonsillar hypertrophy may have a 

cumulative effect on narrowing the oropharyngeal airway.26,27 Other risk factors for paediatric OSA 

include craniofacial anomalies and neuromuscular disorders.8,28,29
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Trisomy 21: An at-risk population
A well-studied, unique population with high rates of OSA is patients with 

Down syndrome (DS).30 Overall, 55–80% of children with DS have OSA.31,32 

Hill et al. found that 14% of children with DS had moderate-to-severe 

OSA and 59% had mild-to-moderate OSA.33 Some characteristic features 

of DS, such as obesity, baseline hypotonia and altered craniofacial 

anatomy, including midface hypoplasia and macroglossia, place them 

at a higher risk of the disease.33,34 OSA may be associated with severe 

ramifications in this population. Breslin et al. identified an association 

between OSA, reduced cognition and lower verbal intelligence quotient 

in a paediatric DS cohort.35 Due to the high incidence of OSA in these 

patients, the American Academy of Otolaryngology-Head and Neck 

Surgery (AAO-HNS) recommends screening all children with DS for OSA 

by overnight PSG before 4 years of age.20 Unfortunately, patients with 

DS are more likely to have disease persistence after initial therapy with 

adenotonsillectomy (AT).36–38 Reasons for this are discussed later in this 

article.

Treatments
Adenotonsillectomy
In children, the most common cause of OSA oropharyngeal obstruction is 

adenotonsillar hypertrophy.1,20 The AAO-HNS guidelines support surgical 

management via AT as the first-line treatment for appropriate children 

with OSA diagnosed using PSG.20 AT is also indicated for children who 

demonstrate signs of obstructive SDB with adenotonsillar hypertrophy 

and clinical signs of comorbid conditions, such as growth retardation, 

enuresis and school/behavioural issues, which may improve after 

surgery.20

Surgical removal of the adenoids and palatine tonsils often results 

in significant improvements in respiratory parameters, including 

the AHI, obstructive apnoea and hypopnoea indices and minimum 

oxygen saturation.39 Success rates of AT approaches 80% in certain 

populations.40–42 AT has also been associated with improvements in 

behaviours, such as aggression, attention and hyperactivity, and in the 

quality of life.9,43

While highly efficacious in developmentally typical children, AT has 

lower efficacy in children with DS.36 The literature suggests that 30–50% 

of children with DS have persistent OSA after AT.44 In addition, these 

children suffer higher complication rates post-operatively. Cottrell et al. 

demonstrated that 78/251 (31.5%) of children suffered a post-operative 

complication needing medical attention, most commonly respiratory 

issues (53.8%), poor oral intake (37.2%) and bleeding (17.9%).45 These 

findings were echoed by Goldstein et al.46 In this setting, additional or 

alternate therapies may be considered.

Continuous positive airway pressure
Continuous positive airway pressure (CPAP) is the mainstay of treatment 

for adult patients with OSA and is an option for children who are not 

appropriate surgical candidates for AT.47 It can also be considered in 

children with persistent OSA after AT.47,48 CPAP is delivered nasally 

or oronasally via a mask and stabilizes the upper airway by providing 

positive pressure that exceeds the pressure of the collapsing 

intraluminal oropharyngeal space.49 Studies have highlighted the 

benefits of positive airway pressure (PAP) therapy in managing SDB.50,51 

However, adherence to PAP is a barrier to its efficacy in both adult and 

paediatric populations, leading to persistent, untreated disease.52,53 PAP 

adherence is not as well defined in children as in adults.54 However, the 

most common definition of PAP adherence utilized for children is the 

adult definition: use of PAP ≥4 hours per night for 70% of nights during 

30 consecutive days.55

Weiss et al. found that less than half of the children with OSA were 

using CPAP for >4 hours a night.56 Children with caregiver support 

show improved compliance, and the medical team’s engagement via 

family-based education programmes on CPAP improves adherence.54,57 

Additionally, it has been found that younger children (primary school 

age versus middle/high school age), those with higher baseline AHI and 

those with neurocognitive disorders better tolerate PAP.58

Notably, non-invasive ventilation, including PAP, is an option for children 

with DS who have persistent OSA after AT or who are not candidates 

for surgical management.48,59 However, PAP is less effective in children 

with DS than in developmentally typical children.60 Despite improved 

adherence to PAP, children with DS have poorer clinical outcomes 

compared with non-DS counterparts, namely persistent AHI elevations 

and mask leaks.60,61 Therefore, it is important to continue re-evaluating 

these children to ensure appropriate treatment responses. If the result is 

unsatisfactory, other treatments may be required.

Non-positive airway pressure upper airway 
approaches in obstructive sleep apnoea
There are additional non-surgical and surgical options for the 

management of persistent OSA. Non-surgical approaches work to 

expand the oropharyngeal airway to reduce obstruction. Common 

options include rapid maxillary expansion and oral appliances providing 

maxillary advancement.62–65 Although individual studies have shown 

promise, the data are lacking to definitively comment on these options 

in children.66 Surgical alternatives also aim to increase the size of the 

oropharyngeal airway. These include oromaxillofacial procedures, 

namely maxillomandibular advancements and mandibular distraction 

osteogenesis, or neurosurgical procedures, such as fronto-facial 

monobloc advancement.63,67–69 Tongue base reduction and lingual 

tonsillectomy can be considered in cases with obstruction at these 

sites.70,71 Expansion sphincter pharyngoplasty is another procedure 

aimed at improving oropharyngeal obstruction in children with persistent 

OSA.72,73

The only cure for persistent OSA is a tracheostomy, typically performed by 

otolaryngology or paediatric surgery physicians.48,74 Discussion on which 

of these treatments are most appropriate requires a multidisciplinary 

sleep medicine team and shared decision-making between the team and 

the caregivers.63 Further details about these treatments are outside the 

scope of this article. A list of the mentioned options and their efficacy can 

be found in Table 1.40–42,44,48,54,67–69,71,72,74–79

Hypoglossal nerve stimulation
The upper airway consists of 23 pairs of muscles that are state-

dependent, exhibiting reduced activity upon sleep onset.80–82 Of these, 

the genioglossus is readily accessible, and its role in OSA has, thus, been 

extensively studied.83 The genioglossus is an extrinsic muscle of the 

tongue, originating from the superior mental spine and inserting at the 

tip and dorsum of the tongue and into the body of the hyoid bone.84 It 

is innervated by cranial nerve 12 and supplied by the lingual arteries. 

Importantly, the genioglossus works to maintain airway patency by 

stabilizing the upper respiratory tract.85,86

Efforts to increase the upper airway muscular output, such as 

myofunctional therapy and playing woodwind instruments, for the 

treatment of OSA have been attempted.87,88 These therapies target the 
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oral cavity and oropharyngeal structures to strengthen dilator muscles of 

the upper airway, which relax during sleep and thus result in soft tissue 

collapse in the throat. Patency of the pharyngeal airway, which lacks 

intrinsic support, may be improved with oropharyngeal exercise.88,89

Proof of concept
Despite varying therapeutic success rates of oropharyngeal exercises on 

OSA resolution, they provided the rationale for the hypoglossal nerve 

stimulation (HGNS) device. Studies in both animal models and humans 

were performed to test this idea.

Animal models served as a proof of concept for hypoglossal stimulation for 

the treatment of OSA.90,91 Stimulation of the hypoglossal nerve decreased 

upper airway collapsibility via contraction of musculature, leading to 

improved patency and dilation. Schwartz et al. found that stimulation of 

the proximal trunk of the hypoglossal nerve, which primarily innervates 

the genioglossus, reduced pharyngeal collapsibility.91 Stimulation of 

the hypoglossal nerve, via activation of the genioglossus muscle, was 

more effective than stimulation of the strap muscles and other lingual 

muscles.92 Later, it was determined that action by both tongue protrudor 

muscles (genioglossus) and retractors (styloglossus and hyoglossus) 

occurs when respiratory drive increases, supporting co-stimulation of 

both muscle groups to stabilize the airway during sleep.93,94

Simultaneously, various forms of stimulation were attempted in humans. 

Miki et al. placed percutaneous electrodes into the genioglossus 

muscle in six patients during overnight PSG.95 The authors noted that 

the stimulation of this muscle significantly decreased the incidence of 

apnoea episodes, promoted deeper sleep and did not have any serious 

side effects.95 Schwartz et al. used transoral intramuscular electrodes to 

stimulate the hyoglossus, styloglossus and genioglossus muscles, noting 

the different effects on airway patency by each muscle group.96 Some 

authors similarly used fine-wire electrodes directly into the genioglossus, 

while others developed methods for stimulating the nerve directly.97,98 

This allowed for the activation of both the protrudor and retractor 

muscles for best outcomes. As data accumulated, both in animal and in 

human studies, there was strong evidence for direct HGNS in support of 

airway adequacy during sleep.99

Implantation trials
Prior to its approval by theUS Food and Drug Administration (FDA), several 

studies were conducted to evaluate the feasibility and efficacy of fully 

implanted HGNS devices. The initial studies were performed in adults. 

In 2001, Schwartz et al. implanted a tripolar cuff electrode for HGNS.100 

The device was placed in eight adults, confirming the feasibility of the 

procedure and therapeutic benefits in OSA via stimulation of the entire 

distal nerve.100 The authors noted reduced AHI and oxyhaemoglobin 

desaturations after intervention with unilateral hypoglossal activation.100 

Subsequently, a similar study was performed with more patients, finding 

comparable results lasting for at least 1 year.101

With the knowledge that branches of the hypoglossal nerve could be 

directly isolated and stimulated to move the genioglossus and improve 

airway obstruction, technology and techniques advanced to place the 

cuff electrode more distally, thereby targeting the protrudor muscles.97,102 

This adjustment was supported in multiple studies, demonstrating 

similar efficacy.103–106

Several issues with these devices were appreciated. Eastwood et al. 

noted that 71% of participants experienced one or more adverse events 

from the implantation surgery, including numbness, pain or skin irritation 

at the incision site.104 In addition, 67% of participants experienced 

therapy-related complications, including abrasions on the tongue surface 

and tongue muscle fatigue.104 However, these events were of short 

duration and resolved in all cases.104 Most studies cite low rates of similar 

complications.99 Overall, the pilot studies suggested that implantation 

was well tolerated with therapeutic efficacy for the management of OSA. 

Therefore, definitive trials were warranted.

Clinical trials
The Stimulation Therapy for Apnea Reduction Trial (STAR; ​ClinicalTrials.​

gov identifier: NCT01161420) was pivotal in assessing the outcomes of 

unilateral HGNS in adult patients with OSA.107 This was a multicentre, 

prospective, single-group cohort study of patients with OSA intolerant 

to CPAP. The primary outcome measures were AHI and oxygen 

desaturation index (ODI) changes with implantation. Secondary 

outcomes included quality-of-life assessments as well as percentage 

of sleep time with oxygen saturation <90%. Inclusion criteria were 

patients 22 years or older who were intolerant to CPAP with a body 

mass index (BMI) of 32 kg/m2 or less and AHI between 20 and 50 events 

per hour. Exclusion criteria were tonsillar hypertrophy and collapse 

of palatal tissues on pre-operative drug-induced sleep endoscopy 

(DISE). The study included 126 patients, 66% of whom saw a reduction 

of at least 50% in baseline AHI at 1 year. The authors noted that at 

the 12-month follow-up, repeat PSG revealed a median AHI reduction 

of 68% and an ODI reduction of 70% from baseline. In addition, 23 

patients were selected for randomized therapy withdrawal, thereby 

serving as their own controls. These patients had return of their OSA 

despite a reduction in AHI the week prior, during the use of the device, 

further confirming its efficacy. Patients also reported improvement 

in secondary outcomes, namely quality of life, snoring and daytime 

sleepiness.107 Treatment responses were sustained at 3 and 5 years 

Table 1: Comparison of paediatric hypoglossal nerve 
stimulation with other obstructive sleep apnoea treatment 
modalities40–42,44,48,54,67–69,71,72,74–79

Procedure/device Success rate

Paediatric HGNS At least 50% reduction in AHI in 
paediatric patients75

AT •	 As high as 80% in certain 
populations40–42

•	 30–50% of children with DS 
have persistent OSA after AT44

Continuous positive airway pressure •	 90% in most patients, but 50% 
compliance54

•	 Syndromic children: 86.2% 
success rate76

Oral appliances May have efficacy; data are lacking 
in children77,78

Maxillomandibular advancement *Surgical success rate: 85.5%; 
surgical cure rate: 38.5%67

Mandibular distraction osteogenesis •	 Average AHI improvement of 
33.9%68

•	 Successful treatment of airway 
obstruction: 89.3% of children69

Tongue base reduction 48.5% reduction in AHI71

Lingual tonsillectomy AHI <1, success rate 17%; AHI <5, 
success rate 51%79

Expansion sphincter pharyngoplasty Cure rates: AHI <1, 64%, AHI <2, 
72% and AHI <5, 60%72

Tracheostomy Considered curative48,74

*Data are derived from adult populations.
AHI = apnoea–hypopnoea index; AT = adenotonsillectomy; DS = Down syndrome; 
HGNS = hypoglossal nerve stimulation; OSA = obstructive sleep apnoea.
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after implantation with minimal risk.102,108 A subsequent meta-

analysis found that all available devices performed similarly, indicating 

equivalent treatment success as well as potential generalizability of 

the aforementioned results.109

Three medical device companies have conducted human trials with 

hypoglossal nerve stimulators. The Inspire® Upper Airway Stimulation 

system (P130008/S039; Inspire Medical Systems, Inc., Maple Grove, 

MN, USA) received FDA approval in 2014, with post-market trials using 

the device.110,111 The long-term safety of the Genio® system (Nyxoah 

SA, Mont-Saint-Guibert, Belgium) in adult patients with OSA will soon 

be assessed in a clinical trial (A prospective, open-label, multicentric 

extension study to assess the long-term safety of the Genio® system in 

study subjects who have been implanted with the Genio® implantable 

stimulator [IS] for the treatment of OSA in adult patients; ​ClinicalTrials.​gov 

identifier: NCT05939141).112

Procedure
By maintaining a stiffened tongue and tongue protrusion, the HGNS 

device opens the airway and reduces airway collapse during sleep.113 The 

Inspire® Upper Airway Stimulation system is composed of a respiratory 

sensing lead, impulse generator (IPG) and stimulation lead. The device is 

controlled by an external remote control. The respiratory-sensing lead 

detects the respiratory cycle phase and activates the impulse generator 

upon inspiration; the impulse generator then sends an electrical impulse 

to the stimulation lead on the hypoglossal nerve, causing tongue 

protrusion.83 107,114 Figure 1 provides a flow diagram of this process.114

The HGNS device was originally introduced as a right-sided, three-

incision approach to limit noise from the cardiovascular system and 

accommodate existing cardiac implantation devices.115–117 This strategy 

involved one incision for the stimulator lead midway in the right 

submandibular region, a second incision for the IPG at the right anterior 

chest wall and a third incision for the respiratory-sensing lead along the 

fifth or sixth intercostal space at the lateral chest.115 Kent et al. eliminated 

the need for the third incision site by placing the respiratory sensory 

electrode behind the IPG.118 Due to the reduced intraoperative time 

and post-operative pain, the FDA approved the two-incision, right-sided 

implantation in March 2021.116,119 The two-incision technique has also 

been successfully conducted in left-sided implantation and should be 

considered if right-sided implantation is contraindicated.120

Devices are typically activated 1 month following placement. Patients are 

required to repeat a PSG to optimize the voltage settings for upper airway 

patency throughout sleep several months after surgery, with additional 

routine follow-up to ensure treatment success.110

Hypoglossal nerve stimulation in children
As mentioned previously, patients with DS are uniquely at risk for OSA, 

and disease persistence, after initial treatment. A majority (55–80%) of 

children with DS have OSA.31,32 In this population, the pathophysiology 

is multifactorial and related to several anatomic features, including 

generalized hypotonia, macroglossia, midface hypoplasia, small 

tracheal calibre and lingual tonsil hypertrophy.121 It is estimated that 

only 16–33% of children with DS and OSA have resolution of their OSA 

after AT.121,122 Oftentimes, the site of residual obstruction is at the base 

of the tongue or may be due to pharyngeal collapse and oropharyngeal 

crowding associated with concomitant obesity and/or lingual tonsillar 

hypertrophy.121 It has also been shown that 63% of patients with DS and 

persistent OSA have obstruction from glossoptosis, a feature that can be 

improved with HGNS. Therefore, this technology was applied specifically 

to children with DS in the setting of CPAP intolerance.36

Several case reports have shown the success of HGNS in adults with 

DS, suggesting expanded indications for the device. Van de Perck et 

al. reported a case of an adult patient with DS, severe OSA and CPAP 

intolerance who underwent HGNS.123 They were found to have a 63% 

decrease in AHI and a 77% decrease in ODI 6 months after HGNS device 

implantation, with an average device usage of 9.4 hours per night.123 A 

case series of three adults with DS and OSA showed strong adherence 

to the use of HGNS at an average of 57.3 hours per week and overall 

reductions in the titrated AHI.124

With these studies in mind, implantation was then attempted in children 

with DS. Diercks et al. implanted the first six paediatric HGNS devices 

in 2018.125 Participants (aged 12–18 years) had DS and severe OSA (AHI 

>10 events/hour) despite prior AT.125 In all patients, the implant was well 

tolerated and effective in significantly improving their OSA.125 At 1-year 

follow-up, patients showed an 85% reduction in AHI, with four children 

having an AHI <5 events/hour and two children with AHI <10 events/

hour.125 The authors also reported a significant improvement in quality 

of life with the use of the HGNS device in these patients, as measured 

by the OSA-18 questionnaire.125 Caloway et al. evaluated the safety and 

Figure 1: Flow diagram of the mechanism of action of the hypoglossal nerve stimulation114

Reproduced with permission from Vanderveken et al.114 (http://creativecommons.org/licenses/by-nc/4.0).
IPG = implantable pulse generator.

http://creativecommons.org/licenses/by-nc/4.0/
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efficacy of HGNS in 20 nonobese children and adolescents (aged 10–21 

years) with DS and severe OSA.126 These patients had prior intolerance to 

CPAP after previous AT.126 The authors found that HGNS therapy was both 

safe and effective, with a median percentage reduction in titration AHI of 

85% and a change in OSA-18 scores by 1.15 points, indicating a moderate 

clinical change in the quality of life.126 A systematic review and meta-

analysis of efficacy and adverse effects of HGNS in adolescents with OSA 

and DS identified nine studies, with a total of 106 patients.127 This study 

found that HGNS significantly reduces the AHI as well as improves the 

quality of life in patients undergoing the procedure.127 At this time, there 

is an ongoing clinical trial (Effects of hypoglossal nerve stimulation on 

cognition and language in Down syndrome and obstructive sleep apnea; ​

ClinicalTrials.​gov identifier: NCT04801771) involving 57 adolescents and 

young adults (aged 10–21 years) with DS and moderate-to-severe sleep 

apnoea post-AT for 12 months after HGNS device implantation.128 The 

study will evaluate changes in cognition and language after therapy with 

the HGNS device.

Clinical indications
FDA approval for the Inspire® Upper Airway Stimulation system 

(P130008/S039) was originally granted in May 2014.111,129 In 2023, 

FDA approval expanded and now includes (1) people with moderate-

to-severe OSA (15 ≤ AHI ≤ 100) aged 22 years and older who cannot 

tolerate PAP or bi-level PAP and who do not have complete blockage 

of the soft palate; (2) people aged 18–21 years with moderate-to-

severe OSA (15 ≤ AHI  ≤  100) and (3) people aged 13–18 years with 

DS and severe OSA (10 ≤ AHI  ≤  50) who are not AT candidates and 

have been considered for all alternative treatments.111,129 Table  2 

provides the complete FDA inclusion criteria for HGNS.129–131 To date, 

there are limited studies in children as the device was only recently 

approved.129–131 It is expected that there will be a growing body of 

literature on children, which likely will result in further expansions for 

the indications and patient eligibility.

Complications
Overall, HGNS therapy is well tolerated. The STAR trial reported no serious 

complications, rehospitalizations or infections from the procedure.107 

Two participants required repositioning of the neurostimulator due to 

discomfort. Less serious adverse events related to tongue discomfort 

resolved with continued use of the HGNS device.107 No long-term 

complications were reported in a cohort of 600 patients followed for 1 

year after implantation.132 It should be noted that patients with HGNS 

undergoing external electrical cardioversion should be counselled 

on potential device malfunction.133 Additionally, patients with chronic 

lower respiratory diseases may be at an increased risk of intraoperative 

pneumothorax and pleural effusion and must be counselled 

accordingly.134

Paediatric trials parallel adult trials in their low complication rates. Diercks 

et al. reported that two patients experienced perioperative adverse 

events, including irritation of the chest incision and poor pain control, 

which were addressed with antibiotics and improved pain regimens.75,125 

Jayawardena et al. indicated no major complications among 23 patients 

implanted with the HGNS device.135 Other cited complications include 

tongue or oral pain/discomfort, oral ulcers, surgical-site rash/cellulitis 

and cheek swelling.127

Some unique paediatric considerations include the potential for device 

displacement during puberty, the need for battery replacement every 10 

years and the potential benefit of adjustments in surgical technique.75,135 

Further research is needed to fully evaluate these possibilities.

Hypoglossal nerve stimulation outcomes
To date, the success rate for HGNS is best established in adults, with 

a quoted rate of 66%.107 Factors contributing to surgical success are 

being further elucidated. Ong et al. found that patients with complete 

anterior–posterior or lateral soft palate and/or epiglottic collapse are at 

risk of HGNS failure.136 Complete concentric collapse at the velum is a 

known contraindication for implantation, and in this study, patients with 

this pattern were excluded from implantation.129,136 Chao et al. noted 

lateral oropharyngeal collapse and significantly elevated preoperative 

AHI (49.4 ± 19.6 versus 36.9 ± 18.8, p=0.05) as risk factors for poor 

surgical success.137 Xiao et al., interestingly, did not find any association 

between DISE patterns of collapse, but instead noted Mallampati III/IV 

and Friedman Tongue Position IV as factors that led to mildly decreased 

response.138 Lee et al. noted that patients with lower pre-operative PAP 

requirements (<8 cm H2O) had a greater response rate to HGNS.139 Seay 

et al. similarly found that lower PAPs during a DISE were associated with 

HGNS responders when compared with non-responders.140

Researchers and surgeons are expanding the use of HGNS outside of the 

FDA approval criteria (Table 2). Sarber et al. reported the implantation in 

such patients with a success rate of 67%, which is similar to the 1-year 

STAR trial results at 66%.141 The need to better characterize appropriate 

patients for this procedure, with additional data points outside of the FDA 

approval, is currently being investigated.130

Summary
OSA is common in the paediatric population, with higher rates in at-risk 

groups. AT is the first-line treatment for the majority of children, and 

management of persistent OSA after AT is nuanced. HGNS has recently 

expanded therapeutic options for patients with refractory OSA, including 

children and adolescents with DS. To date, this procedure has proven 

effective and well tolerated across multiple clinical trials. Continued 

Table 2: US Food and Drug Administration inclusion criteria 
for hypoglossal nerve stimulation129–131

2014130,131 2023129

Parameter

Age >18 years 22+ years 18–21 years 13–18 years 
with DS

AHI 15 ≤ AHI ≤ 65 
events/hour

15 ≤ AHI ≤ 100 events/hour 10 ≤ 
AHI ≤ 50 
events/
hour

BMI <32 kg/m2 <40 kg/m2

Central/mixed 
apnoeas

<25% of total 
events

<25% of total events

DISE findings No complete 
concentric 
collapse at the 
palate

No complete concentric collapse at the palate

Failed PAP Yes Yes Yes

Other •	 Not candidates for AT
•	 Have been considered for 

all other standard-of-care 
treatment options

Central or mixed apnoeas must comprise <25% of the total AHI score.
AHI = apnoea– hypopnoea index; AT = adenotonsillectomy; BMI = body mass index; 
DISE = drug-induced sleep endoscopy; DS = Down syndrome; PAP = positive airway 
pressure.
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studies will likely expand eligible paediatric, and adult, candidates for HGNS. q
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