touchEXPERT OPINIONS

Current and future considerations for the use of immune checkpoint inhibitors in non-small cell lung cancer

Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by touchIME and USF Health to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by touchIME and USF Health of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in touchIME activities
- touchIME and USF Health accept no responsibility for errors or omissions

Spotlight on immunotherapy for the treatment of early-stage NSCLC

Dr Pilar Garrido

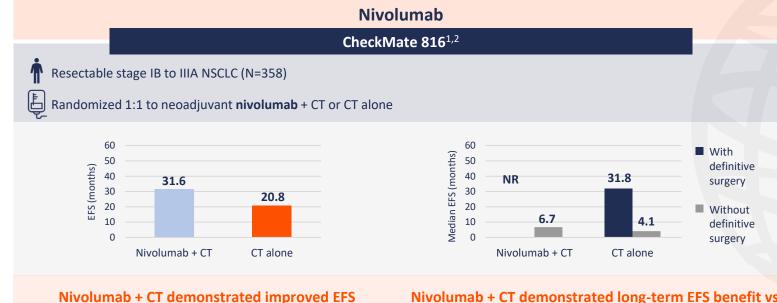
University Hospital Ramón y Cajal, University of Alcalá, Madrid, Spain

Immune checkpoints and anti-tumour immunity

PD-L1, PD-1 and CTLA-4^{1,2}

- PD-1 and CTLA-4 are immunoregulatory receptors expressed on T lymphocytes²
- Engagement of CTLA-4 by CD80/86 and of PD-1 by PD-L1, suppresses T-cell responses to prevent immune-mediated tissue damage²

The PD-1/PD-L1 and CTLA-4 pathways contribute to tumour immune escape and can be targeted by immunotherapy^{1,2}


2. Antigen presentation APC CD80/86 and T-cell priming CTLA-4 T cell 1. Release of tumour T-cell inhibition or antigens anergy CD80/86 Tumour CTLA-4 cell LYMPH NODE 3. T-cell mediated killing TUMOUR of tumour cells MICROENVIRONMEN Restored anti-tumour **T-cell response** PD-L1 PD-1 PD-1 Inhibition of anti-tumour **Restored anti-tumour** T-cell response T-cell response

Tumour immune escape and checkpoint inhibitors^{1,2}

APC, antigen-presenting cell; CD, cluster of differentiation; CTLA-4, cytotoxic T-lymphocyte antigen 4; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1. 1. Kim HC, et al. *Tuberc Respir Dis (Seoul)*. 2020;83:14–9; 2. Seidel JA, et al. *Front Oncol*. 2018;8:1–14.

Checkpoint inhibitors for early-stage NSCLC *Neoadjuvant treatment*

vs CT alone¹

Nivolumab + CT demonstrated long-term EFS benefit vs CT alone in patients who had definitive surgery²

CT, chemotherapy; EFS, event-free survival; NR, not reached; NSCLC, non-small cell lung cancer. 1. Forde PM, et al. *N Engl J Med*. 2022;386:1973–85; 2. Spicer J, et al. Presented at: ASCO 2023, Chicago, IL, USA. 2–6 June 2023. Abstr 8521.

Checkpoint inhibitors for early-stage NSCLC *Adjuvant treatment*

Atezolizumab showed higher efficacy with similar AE rates vs best supportive care

Direct comparisons between trials should not be made due to differences in trial design.

8520.

AE, adverse event; CT, chemotherapy; DFS, disease-free survival; NSCLC, non-small cell lung cancer. 1. Felip E, et al. Lancet. 2021;398:1344–57; 2. O'Brien M, et al. Lancet Oncol. 2022;23:1274–86; 3. Oselin K, et al. Presented at: ASCO 2023, Chicago, IL, USA. 2–6 June 2023. Abstr

Pembrolizumab

PEARLS/KEYNOTE-091^{2,3}

Resected stage IB, II or IIIA NSCLC Randomized 1:1 to **pembrolizumab** or placebo

Pembrolizumab treatment demonstrated higher DFS vs placebo in all patients² and in the subgroup who received prior adjuvant CT³

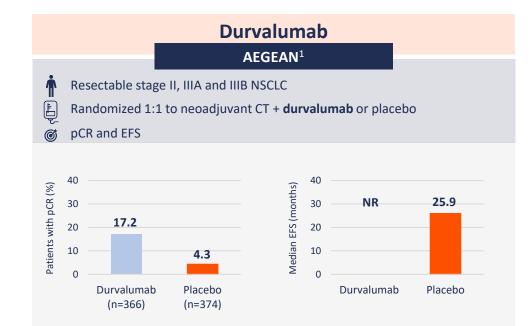
Key ongoing phase III trials in early-stage NSCLC Neoadjuvant and adjuvant treatment

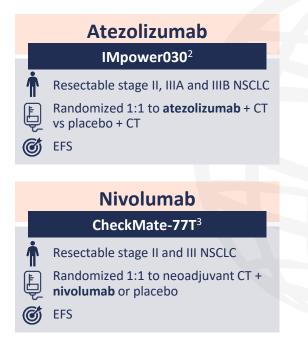
Pembrolizumab

KEYNOTE-671

Resectable, stage II, IIIA and IIIB NSCLC (N=797)

Randomized 1:1 to neoadjuvant CT + **pembrolizumab** followed by resection + **pembrolizumab** or neoadjuvant CT + **placebo** followed by resection + **placebo**




EFS was significantly improved with neoadjuvant pembrolizumab + CT followed by resection and adjuvant pembrolizumab vs neoadjuvant placebo + CT followed by resection and adjuvant placebo¹

CT, chemotherapy; EFS, event-free survival; NR, not reached; NSCLC, non-small cell lung cancer. Wakelee HA, et al. *J Clin Oncol.* 2023;41(Suppl.):Abstr LBA100.

E

Key ongoing phase III trials in early-stage NSCLC Neoadjuvant and adjuvant treatment

CT, chemotherapy; EFS, event-free survival; NR, not reached; NSCLC, non-small cell lung cancer; pCR, pathological complete response. 1. Heymach JV, et al. *Cancer Res.* 2023;83(Suppl.):CT005; 2. ClinicalTrials.gov. NCT03456063. Available at: www.clinicaltrials.gov/ct2/show/NCT03456063 (accessed 7 June 2023); 3. ClinicalTrials.gov. NCT04025879. Available at: www.clinicaltrials.gov/ct2/show/NCT03456063 (accessed 7 June 2023);

Examining the role of biomarkers in NSCLC

Dr Pilar Garrido

University Hospital Ramón y Cajal, University of Alcalá, Madrid, Spain

Current recommendations for biomarker testing

Clinical presentation*	Establish histological subtype with adequate tissue for molecular testing			
Histological subtype	Adenocarcinoma Large cell NSCLC not otherwise specified	Squamous cell carcinoma		
Biomarker testing	Consider broad, panel-based testing of oncogenic drivers and PD-L1	Consider broad, panel-based testing of oncogenic drivers and PD-L1 ⁺		

*Stage IVA, advanced or metastatic disease; †molecular testing not recommended by ESMO in squamous cell carcinoma except in never, long-time ex- or light smokers. ESMO, European Society for Medical Oncology; NSCLC, non-small cell lung cancer; PD-L1, programmed death-ligand 1. NCCN. Non-small cell lung cancer. V2.2023. Available at: <u>www.nccn.org/professionals/physician_gls/pdf/nscl.pdf</u> (accessed 10 March 2023).

Guidelines for genetic testing in advanced non-squamous NSCLC Genetic alteration ESMO¹

Guidelines recommend **broad**, **panel-based testing prior to initiation of therapy** for advanced or metastatic NSCLC^{1,2}

Recommendations also include testing for **PD-L1 expression**^{1,2}

The frequency of testing for *EGFR*, *BRAF*, *NTRK*, *MET*, *RET*, *KRAS*, *ROS1*, *ALK* and *HER2* was reported to be **69–80%** among US-based physicians (N=170)³

Genetic alteration	ESMO ¹	NCCN ²
EGFR mutation	*	
ALK rearrangement	√ †	\checkmark
ROS1 rearrangement		\checkmark
BRAF mutation	\checkmark	\checkmark
NTRK rearrangement		×
NTRK1/2/3 fusions	×	\checkmark
KRAS mutation	×	
METex14 skipping	×	\checkmark
RET rearrangement	×	\checkmark
ERBB (HER2) mutation	×	\checkmark

*Mandatory for early and locally advanced NSCLC. †ALK fusion status optional for early and locally advanced NSCLC.

ALK, anaplastic lymphoma kinase; BRAF, B-Raf proto-oncogene; EGFR, epidermal growth factor receptor; ERBB2, Erb-B2 receptor tyrosine kinase 2; ESMO, European Society for Medical Oncology; HER2, human epidermal growth factor receptor 2; KRAS, Kirsten rat sarcoma virus proto-oncogene; MET, mesenchymal-epithelial transition; METex14, MET exon 14 skipping; NCCN, National Comprehensive Cancer Network; NSCLC, non-small cell lung cancer; NTRK, neurotrophic tyrosine receptor kinase; PD-L1, programmed death-ligand 1; RET, rearranged during transfection; ROS1, c-ros oncogene 1. 1. ESMO Pocket Guideline. 2022. Available at: <u>http://interactiveguidelines.esmo.org/esmo-web-app/toc/index.php?subjectAreaID=1&loadPdf=1</u> (accessed June 2023); 2. NCCN. Non-small cell lung cancer. V2.2023. Available at: <u>www.nccn.org/professionals/physician_gls/pdf/nscl.pdf</u> (accessed 7 June 2023); 3. Mileham KF, et al. *Cancer Med*. 2022;11:530–8.

Key phase III trial data supporting PD-L1 testing in late-stage NSCLC

Pembrolizumab

KEYNOTE-042¹

Locally advanced or metastatic NSCLC without sensitizing EGFR or ALK genetic alterations, PD-L1 TPS ≥1% (N=1,274)

ate-stage NSCLC

Ł or CT **OS** significantly longer with

Randomized 1:1 to pembrolizumab

pembrolizumab vs CT in all TPS groups

PD-L1 ≥50% HR: 0.69 (95% CI 0.56-0.85, p=0.0003)

PD-L1 ≥20% HR: 0.77 (95% CI 0.64-0.92, p=0.0020)

PD-L1 ≥1% HR: 0.81 (95% CI 0.71-0.93, p=0.0018)

Durvalumab

PACIFIC²

Unresectable, stage III NSCLC with no disease progression after ≥2 cycles of Pt-based CRT (N=713)

Randomized 2:1 to durvalumab or Ę placebo

Post hoc analysis showed **PFS benefit** with durvalumab across all PD-L1 subgroups

OS benefit across all PD-L1 subgroups except PD-L1 <1%

Durvalumab + tremelimumab

MYSTIC³

Untreated stage IV NSCLC without sensitizing EGFR or ALK genetic alterations (N=1,118)

F	R
þ	C

Randomized 1:1:1 to durvalumab, lurvalumab + tremelimumab or CT

OS benefit at 24 months with durvalumab vs CT

> **Durvalumab:** 38.3% (95% CI 30.7-45.7)

Durvalumab + tremelimumab: 35.4% (95% CI 28.1-42.8)

CT: 22.7% (95% CI 16.5-29.5)

Direct comparisons between trials should not be made due to differences in trial design.

ALK, anaplastic lymphoma kinase; CI, confidence interval; CRT, chemoradiotherapy; CT, chemotherapy; EGFR, epidermal growth factor receptor; HR, hazard ratio; NSCLC, non-small cell lung cancer; OS, overall survival; PD-L1, programmed death-ligand 1; PFS, progression-free survival; Pt, platinum; TPS; tumour proportion score. 1. Mok TSK, et al. Lancet. 2019;393:1819-30; 2. Paz-Ares L, et al. Ann Oncol. 2020;31:798-806; 3. Rizvi NA, et al. JAMA Oncol. 2020;6:661-74.

4.

Future of biomarker testing for ICI use

Emerging biomarkers

Tumour mutation burden May predict PFS and OS in advanced NSCLC^{1,2}

DDR gene alterations Associated with higher immunity and better clinical outcomes in patients with NSCLC treated with ICIs^{1,3}

Circulating tumour DNA May predict OS in patients with metastatic non-squamous NSCLC^{1,4}

TP53

Low-load *TP53* mutations can predict PFS benefit in patients with NSCLC treated with PD-1/PD-L1 inhibitors^{1,5}

Tumour microenvironment May help identify patients with NSCLC who will benefit from treatment with ICIs^{1,6}

Gut microbiome Higher diversity of intestinal flora associated with better ICI efficacy $^{\!\!\!1,7,8}$

Peripheral blood biopsy is gaining popularity:1

- Minimally invasive
- Contains DNA, RNA and proteins released by tumour tissues
- Reflects dynamic changes in the tumour microenvironment

DDR, damage response and repair; ICI, immune checkpoint inhibitor; NSCLC, non-small cell lung cancer; OS, overall survival; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1; PFS, progression-free survival.

1. Pan Y, et al. Biomarker Res. 2022;10:9; 2. Alborelli I, et al. J Pathol. 2020;250:19–29; 3. Liu J, et al. J Thorac Oncol. 2021;16(Suppl.):S893–4;

4. Assaf ZJ, et al. J Thorac Oncol. 2021;16(Suppl.):S905–6; 5. Wang S, et al. J Thorac Oncol. 2021;16(Suppl.):S1138–9; 6. Ofek E, et al. J Clin Oncol. 2021;39(Suppl.):9045;

Emerging immunotherapy combinations and their potential impact on clinical practice

Dr Pilar Garrido

University Hospital Ramón y Cajal, University of Alcalá, Madrid, Spain

Novel agents in combination with immunotherapy

Novel agent	Tiragolumab ¹	Tiragolumab ²	Eftilagimod alpha ³	Domvanalimab ⁴
Combined ICI	+ atezolizumab	+ atezolizumab	+ pembrolizumab	+ zimberelimab
Comparator arm(s)	Placebo + atezolizumab	Placebo + atezolizumab	None	Zimberelimab alone Zimberelimab + etrumadenant
Study	SKYSCRAPER-01 Phase III NCT04294810	CITYSCAPE Phase II NCT03563716	TACTI-002 Phase II NCT03625323	ARC-7 Phase II NCT04262856
Population	Untreated metastatic NSCLC, PD-L1 ≥50% (N=534)	CT-naive recurrent or metastatic NSCLC, PD-L1 ≥1% (N=135*)	Untreated metastatic NSCLC unselected for PD-L1 expression (N=114)	Untreated stage IV squamous or non-squamous NSCLC, PD-L1 ≥50% (N=149 ⁺)
Efficacy data	PFS: Not met OS: Immature	ORR: 31% PFS: 5.4 months	ORR: 37% [‡] DCR: 73% RR: 40% [§]	ORR: 41% mPFS: 12.0 months

Direct comparisons between trials should not be made due to differences in trial design.

*Tiragolumab + atezolizumab, n=67; †Domvanalimab + zimberelimab efficacy population, n=44; ‡In 75 patients with minimum follow-up of 6 months as assessed by iRECIST; §Non-squamous pathology. CT, chemotherapy; DCR, disease control rate; ICI, immune checkpoint inhibitor; mPFS, median PFS; NSCLC, non-small cell lung cancer; ORR, objective response rate;

OS, overall survival; PD-L1, programmed death-ligand 1; PFS, progression-free survival; RR, response rate.

1. Brazel D, et al. Lung Cancer (Auckl). 2023;14:1–9; 2. Cho BC, et al. Lancet Oncol. 2022:23:781–92; 3. Felip E, et al. J Clin Oncol. 2022;40(Suppl.):9003;

4. Johnson ML, et al. J Clin Oncol. 2022;40(Suppl.):397600.

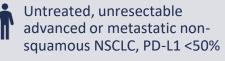
Ongoing phase III antibody–drug conjugate + immunotherapy trials

Datopotamab deruxtecan

+ pembrolizumab

TROPION-Lung08^{1,2}

Untreated, unresectable advanced or metastatic NSCLC, PD-L1 ≥50%


1:1 datopotamab deruxtecan + pembrolizumab or pembrolizumab alone

PFS and OS

Datopotamab deruxtecan + pembrolizumab

TROPION-Lung07³

1:1:1 datopotamab deruxtecan + pembrolizumab + Pt or datopotamab deruxtecan + pembrolizumab or pembrolizumab + pemetrexed + Pt

Datopotamab deruxtecan + durvalumab

AVANZAR⁴

Untreated, unresectable locally advanced or metastatic NSCLC

1:1 datopotamab deruxtecan + durvalumab + Pt or pembrolizumab + Pt

PFS and OS, both in the TROP2-positive population

NSCLC, non-small cell lung cancer; OS, overall survival; PD-L1, programmed death-ligand 1; PFS, progression-free survival; Pt, platinum; TROP2, trophoblast cell-surface antigen 2. 1. Levy BP, et al. *J Clin Oncol.* 2022;40(Suppl.):TPS3162; 2. ClinicalTrials.gov. NCT05215340. Available at: www.clinicaltrials.gov/ct2/show/NCT05215340 (accessed 7 June 2023); 3. ClinicalTrials.gov. NCT05555732. Available at: www.clinicaltrials.gov/ct2/show/NCT05215340. Available at: www.clinicaltrials.gov/ct2/show/NCT05215340. Available at: www.clinicaltrials.gov/ct2/show/NCT05555732 (accessed 7 June 2023); 4. ClinicalTrials.gov. NCT05687266. Available at: www.clinicaltrials.gov/ct2/show/NCT05687266 (accessed 7 June 2023); 4. ClinicalTrials.gov. NCT05687266 (accessed 7 June 2023).

