Improving the alpha-mannosidosis patient journey

Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by USF or touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in touchIME activities
- USF and touchIME accept no responsibility for errors or omissions

Improving first steps in the patient journey: How important is early recognition of alpha-mannosidosis?

Professor Barbara K Burton

Professor of Pediatrics Northwestern University Feinberg School of Medicine Chicago, IL, USA

Why is early recognition of alpha-mannosidosis so clinically challenging?

Challenges in clinical recognition of AM

Alpha-mannosidosis is a rare 'ultra-orphan'

lysosomal storage disorder^{1,2}

Estimated prevalence³ **0.1** in 100,000

Rarity and varying severity of disease presents clinical challenges⁴

Understanding disease natural history¹

Delayed recognition⁴

Underdiagnosis⁵

AM, alpha-mannosidosis.

^{1.} Garbade SF, et al. J Inherit Metab Dis. 2021;44:99-109; 2. Zielonka M, et al. J Inherit Metab Dis. 2019;42:975-83;

^{3.} Orphanet Report Series. Available at: www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases by decreasing prevalence or cases.pdf (accessed 16 December 2022); 4. Hennermann JB, et al. Orphanet J Rare Dis. 2022;17:287. 5. Wiesinger T, et al. Mol Genet Metab. 2020;130:149–52.

What do we currently know about the natural history of alpha-mannosidosis?

Overview of AM

Timeline: Age of symptom onset¹

Clinical subtypes²

Type 3

Severe form

- Immediately recognized due to skeletal abnormalities
- Obvious progression
- Early death from primary CNS involvement or myopathy

Type 2

Moderate form (most common)

- Clinically recognized before10 years of age
- Skeletal abnormalities
- Slow progression
- Development of ataxia at age 20–30

Type 1

Clinically mild form

- Recognized after 10 years of age
- No prominent skeletal abnormalities
- Slow progression

AM, alpha-mannosidosis; CNS, central nervous system.

2. Malm D, Nilssen Ø. Orphanet J Rare Dis. 2008;3:21.

^{1.} Genetic and Rare Diseases Information Center. Available at: https://rarediseases.info.nih.gov/diseases/6968/alpha-mannosidosis (accessed 16 December 2022);

What are the key signs and symptoms associated with alpha-mannosidosis that we should look out for in the clinic?

Prominent signs and symptoms in patients with AM

Organ systems affected

Central nervous system

(ataxia, intellectual disability, hydrocephalus, psychiatric symptoms)

Joints

(aseptic destructive arthritis)

Muscles

(metabolic myopathy)

Vi

Visceral organs (hepatosplenomegaly)

Eyes

(corneal opacities)

Connective tissue

(coarse features)

Auditory system

(impaired hearing)

Immune system

(immunodeficiency)

1. Zielonka M, et al. J Inherit Metab Dis. 2019;42:975-83.

How could we improve early recognition of alpha-mannosidosis, now and in the future?

Addressing barriers to early recognition of AM

Raised awareness among family physicians and HCPs (specialist + community settings)¹

Integrated paediatric specialty assessments¹

Newborn screening²

Improved access to care in non-specialty centres and rural geographies¹

Approaches to improving early recognition of AM

SPARKLE registry
Patient registry and real-world
data are needed to:3

- Better understand disease natural history
- Identify early signs/symptoms
- Characterize biomarkers/predictors of clinical course

Supporting early diagnosis: What more is needed?

Professor Barbara K Burton

Professor of Pediatrics Northwestern University Feinberg School of Medicine Chicago, IL, USA

What warrants an index of clinical suspicion for alpha-mannosidosis?

Does this change with age of presentation?

Prominent signs and symptoms suggestive of AM

Patients ≤10 years¹

Speech delay

Hearing loss

Developmental delay

Motor disturbances/joint laxity

Infections

Facial features

Mild hepatosplenomegaly

Hernia

Patients >10 years¹

Hearing loss

Ataxia

Psychiatric disorder

Not prominent skeletal disorder

Intellectual disability

How do we reach a diagnosis of alpha-mannosidosis?

Route to diagnosis in AM

Clinical

Physical signs + symptoms^{1,2}

- Facial features
- Musculoskeletal
- Auditory
- Immunodeficiency
- Developmental

Biochemistry

Urine analysis^{1,2}

 High levels of mannoserich oligosaccharides

Enzymology

Enzyme activity^{1,2}

 Acid alpha-mannosidase activity 5–10% normal activity in peripheral blood leukocytes

Genetics

Confirmatory genetics^{1,2}

MAN2B1 variants

^{1.} Malm D, Nilssen Ø. Alpha-mannosidosis. 2001 (updated 2019). Available at www.ncbi.nlm.nih.gov/books/NBK1396/ (accessed 16 December 2022);

^{2.} Guffon N, et al. Mol Genet Metabol. 2019;126:470-4.

How informative are genetic tests for pathogenic variants to guide clinical management decisions in alpha-mannosidosis?

Role of MAN2B1 pathogenic variants in AM

Deficient alpha-mannosidase enzyme activity owing to mutations in the *MAN2B1* gene (location: chromosome 19p13.13)^{1,2}

162 MAN2B1 variants reported¹

No clearly established genotype-phenotype correlation^{1,2}

Phenotypic variability between genotypically identical siblings³

If *MAN2B1* variants of uncertain significance are identified on WES, further tests are required to establish a diagnosis of AM^{4,5}

AM, alpha-mannosidosis; MAN2B1, mannosidase alpha class 2B member 1; WES, whole-exome sequencing.

1. Hennermann JB, et al. Orphanet J Rare Dis. 2022;17:287; 2. Lipinski P, et al. Mol Genet Metab Rep. 2022;30:100826; 3. Borgwardt L, et al. Orphanet J Rare Dis. 2015;10:70;

4. Malm D, Nilssen Ø. Alpha-mannosidosis. 2001 (updated 2019). Available at: www.ncbi.nlm.nih.gov/books/ (accessed 16 December 2022); 5. Correspondence with faculty (Prof. Barbara K Burton; 17 January 2023).

How can we address the challenges associated with timely and accurate differential diagnosis?

Differential diagnosis of AM from other LSDs

Clinical and laboratory features of the disorders¹

Overlapping with AM	Disorders	Distinguishing from AM
Coarse facial features, dysostosis multiplex, intellectual disability	Mucopolysaccharidoses	Short stature, contractures
Coarse facial features, dysostosis multiplex	Mucolipidosis II	Short stature, failure to thrive
Coarse facial features, dysostosis multiplex	Mucolipidosis III alpha/beta	Short stature, normal-to-mildly impaired cognitive development
Coarse facial features, dysostosis multiplex, intellectual disability	Sialidosis	Cherry red spot of the macula
Hypotonia, coarse facial features, developmental delay, frequent upper- respiratory infections	Sialuria	Joint stiffness, seizures, microcytic anaemia
Coarse facial features, thickened ribs	Cantú syndrome	Heart defects, hypertrichosis

Why is a timely and accurate diagnosis so important in alpha-mannosidosis?

Optimizing outcomes in AM

QEarly diagnosis is crucial to support outcomes with treatment beyond symptom management and supportive care^{1,2}

If untreated, prognosis remains poor, but many patients live to ≥50 years of age²

Progressive disease course with cognitive, neuromuscular and skeletal deterioration over several decades²

Most patients eventually become wheel-chair dependent²

Pneumonia has been the primary cause of death during recent decades in untreated patients, followed by cancer¹

Hearing loss as one of the first noted symptoms is congenital and non-progressive during disease course³

Untreated patients have worsening white matter abnormalities, diminished myelination, and gliosis⁴

Delays in diagnosis and treatment can lead to cumulative morbidity that may require long-term residential care needs⁵

AM, alpha-mannosidosis.

- 1. Hennermann JB, et al. Orphanet J Rare Dis. 2022;17:287; 2. Guffon N, et al. Mol Genet Metabol. 2019;126:470-4;
- 3. Lipinski P, et al. Mol Genet Metab Rep. 2022;30:100826; 4. Naumchik BM, et al. Cells. 2020;9:1411; 5. Verrecchia E, et al. Adv Ther. 2021;38:1-10.

Optimizing outcomes in alpha-mannosidosis: How might current and emerging targeted therapies address long-term needs?

Professor Barbara K Burton

Professor of Paediatrics
Northwestern University
Feinberg School of Medicine
Chicago, IL, USA

What is the current standard of care for alpha-mannosidosis?

Symptomatic and supportive measures in AM

Treatment aims to prevent and/or manage complications associated with AM

Hearing aids, pressure-equalising tubes

Regular eye and dental check-ups

Antibiotic prophylaxis to prevent infection(s)

Speech and language therapy, educational support

Orthopaedic interventions for skeletal abnormalities, spinal deformities, polyarthropathy

Counselling, psychosocial support

Pro-active early intervention is imperative to ensure children with AM reach their maximum potential

Why is multidisciplinary management so important?

MDT management of AM as a multisystem disorder^{1–4}

Paediatrician/neurologist/PCP **Orthopaedic specialist** Psychologist/psychiatrist Audiologist/otolaryngologist Speech and language therapist **Dentist/orthodontist** Geneticist/genetic counsellor **Ophthalmologist** Physiotherapist/occupational therapist

Despite recent advances in treatment, the management of AM is complicated and often suboptimal; a multidisciplinary approach is essential¹

AM, alpha-mannosidosis; MDT, multidisciplinary team; PCP, primary care provider.

^{1.} Guffon N, et al. *Mol Genet Metabol*. 2019;126:470–4; 2. Genetic and Rare Diseases Information Center. Available at: https://rarediseases.info.nih.gov/diseases/6968/alpha-mannosidosis (accessed 20 December 2022); 3. Adam J, et al. *Mol Genet Metabol*. 2019;20:100480.

How might therapies address long-term needs in alpha-mannosidosis?

Harnessing therapies to address long-term needs in AM

Approaches to minimize storage material accumulation and irreversible pathology

HSCT¹

Introduce functional enzyme-producing cells into blood and bone marrow, with healthy donor cell CNS engraftment

ERT^{2,3}

Promote storage clearance with exogenous functional enzyme

PCT^{2,3}

Enhance activity of misfolded enzyme

SRT²

Inhibit substrate synthesis to prevent accumulation in lysosomes

Role of therapies to support outcomes in AM

Prevent early mortality³

Preserve neurocognitive function^{3,4}

Stabilize and support skeletal development³

Prevent cumulative multisystem morbidity^{3–5}

Support life goals and maximize QoL³⁻⁵

AM, alpha-mannosidosis; CNS, central nervous system; ERT, enzyme replacement therapy; HSCT, haematopoietic stem cell transplant; PCT, pharmalogical chaperone therapy; QoL, quality of life; SRT, substrate reduction therapy.

^{1.} Naumchik BM, et al. Cells. 2020;9:1411; 2. Diaz JCL, et al. Int J Mol Sci. 2022;1:232; 3. Ceccarini V, et al. Int J Mol Sci. 2018;19:1500;

^{4.} Verrecchia E, et al. Adv Ther. 2021;38:1-10; 5. Cathey S, et al. JIMD Rep. 2019;50:44–9.

What therapy approaches are currently available?

Current treatment landscape in AM

HSCT¹

Introduce functional enzyme-producing cells into blood and bone marrow, with healthy donor cell CNS engraftment

Data are limited but studies show HSCT attenuates CNS disease, alleviating neuropathology¹

> Minimizes pathological lysosomal accumulation of mannose-rich oligosaccharides and associated morbidity, notably:

neurologic function and skeletal development¹

88% survival rate with stable engraftment (5.5 years median follow-up) n = 17²

Patients achieved cognitive developmental progress post-HSCT²

ERT³

Promote storage clearance with exogenous functional enzyme

rhLAMAN (velmanase alfa) studies: Long-term data⁴

Velmanase alfa improved biochemical and functional measures that were maintained up to 4 years

sOLIGO clearance (Δ baseline to 12 months) **-72.7%**; 95% CI -81.4, -64.1; p<0.001

n = 31

3MSCT (Δ baseline to 12 months) +9.3%; 95% CI 2.14, 16.5; p=0.013

Early treatment during paediatric age associated with better functional outcomes

Δ, mean change; 3MSCT, 3-minute stair climb test; AM, alpha-mannosidosis; CI, confidence interval; CNS, central nervous system; ERT, enzyme replacement therapy; HSCT, haematopoietic stem cell transplant; rhLAMAN, recombinant human lysosomal alphamannosidase; sOLIGO, serum oligosaccharides.

1. Naumchik BM. et al. Cells. 2020;9:1411; 2. Mynarek M. et al. Bone Marrow Transpl. 2012;47:352–9; 3. Ceccarini V. et al. Int J Mol Sci. 2018;19:1500; 4. Lund AM. et al. J Inherit Metab Dis. 2018;41:1225-33.

What role might enzyme replacement and pharmacological chaperone therapies play in the future management of alpha-mannosidosis?

Improving outcomes: Continuing our focus on earlier intervention

Newborn screening

May facilitate earliest intervention and prevention of clinical manifestations^{1,2}

Recognition¹⁻³

Earliest possible recognition of the possibility of AM in patients is key¹⁻³

Diagnosis^{1–3}

Timely and accurate differential diagnosis to initiate appropriate management¹⁻³

Treatment^{2,3,5,6}

Earlier treatment associated with positive outcomes; wider access to therapies where possible^{2,3,5,6}

Research⁴

Other therapies may continue to further improve the patient journey⁴

Support best outcomes for people living with AM, to achieve life goals and maximize QoL²

AM, alpha-mannosidosis; ERT, enzyme replacement therapy; HSCT, haematopoietic stem cell transplant; QoL, quality of life. 1. Malm D, Nilssen Ø. Alpha-mannosidosis. 2001 (updated 2019). Available at: www.ncbi.nlm.nih.gov/books/NBK1396/; 2. Guffon N, et al. Mol Genet Metabol. 2019;126:470–4; 3. Adam J, et al. Mol Genet Metabol. 2019;20:100480; 4. Garbade SF, et al. J Inherit Metab Dis. 2021;44:99–109; 5. Ceccarini V, et al. Int J Mol Sci. 2018;19:1500; 6. Lund AM, et al. J Inherit Metab Dis. 2018;41:1225–33).

