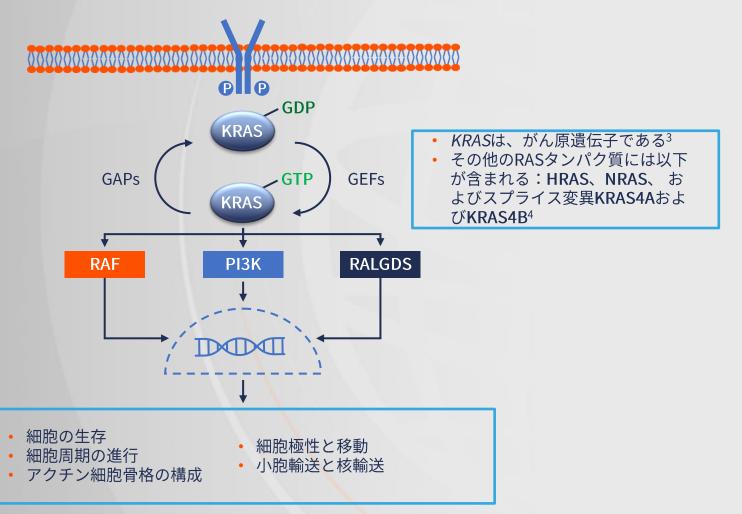
KRAS^{G12C}阻害剤の検討: 固形がん患者の転帰をどのように改善し得るか。

Tony Mok教授
Department of Clinical Oncology
香港中文大学
香港

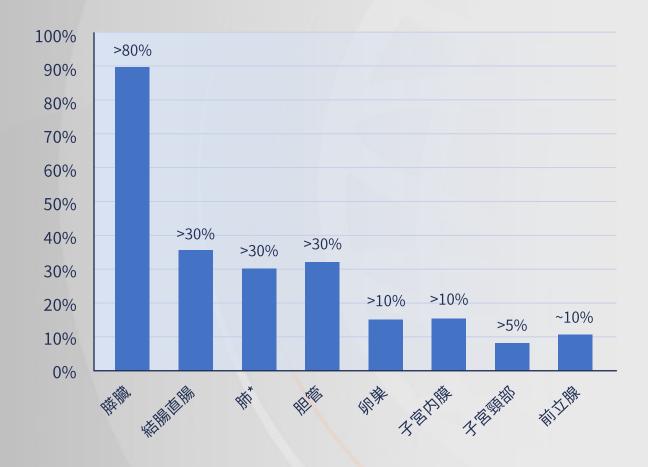
免責事項

- 未承認医薬品や、承認医薬品の未承認の使用について講演者が考察を行うことがあります。そのような状況は、少なくとも1法域における承認状況を反映している可能性があります。
- 講演者は、適応外使用や未承認使用についての言及を必ず開示するよう、touchIME により助言されています。
- touchIMEの活動においてこれらの製品や使用法が言及されても、未承認製品や未承認の使用方法の推薦がtouchIMEによってなされたり暗示されたりするものではありません。
- touchIMEは、誤謬や不作為によるいかなる責任も負いません。

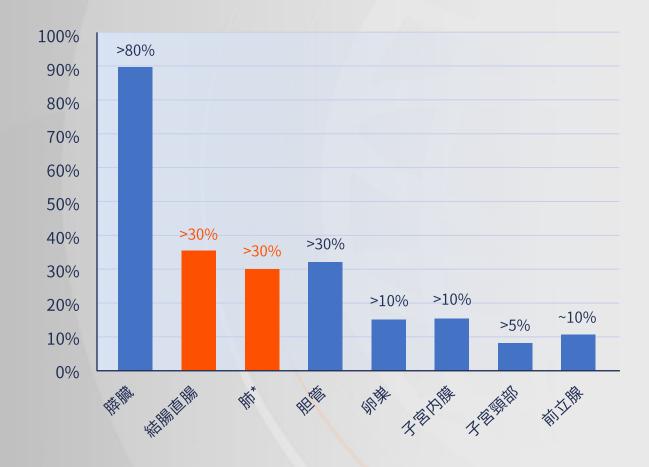


固形がんにおけるKRAS変異の役割を探る

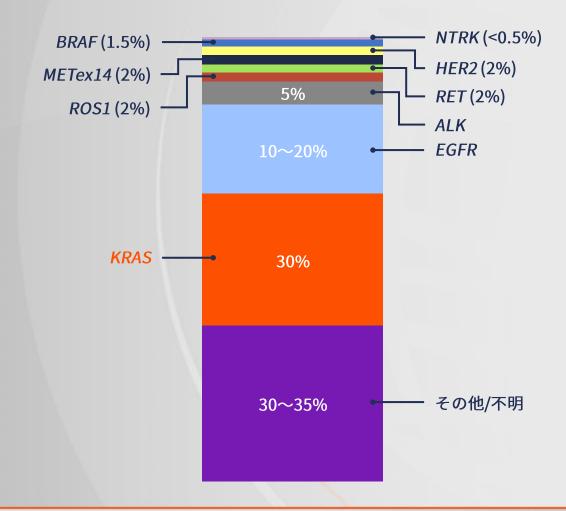
KRASを介したシグナル伝達


Kirstenラット肉腫(KRAS)ウイルス腫瘍遺伝子の作用機序^{1,2}

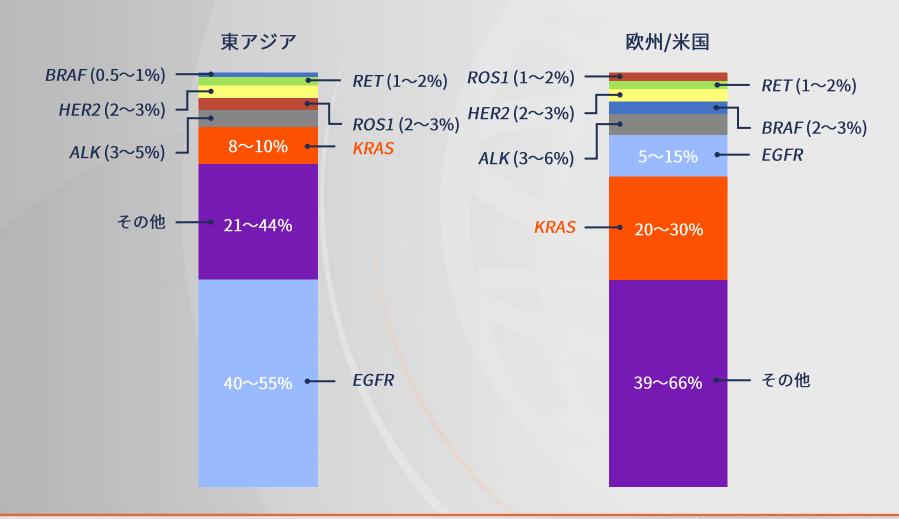
固形がんにおける KRAS 変異


さまざまな固形がんにおける突然変異の発生

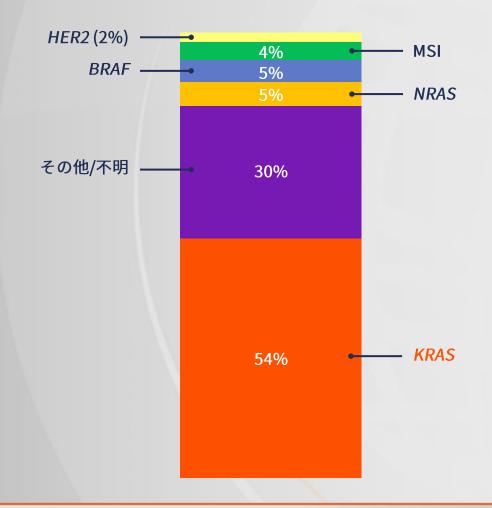
固形がんにおける KRAS 変異


さまざまな固形がんにおける突然変異の発生

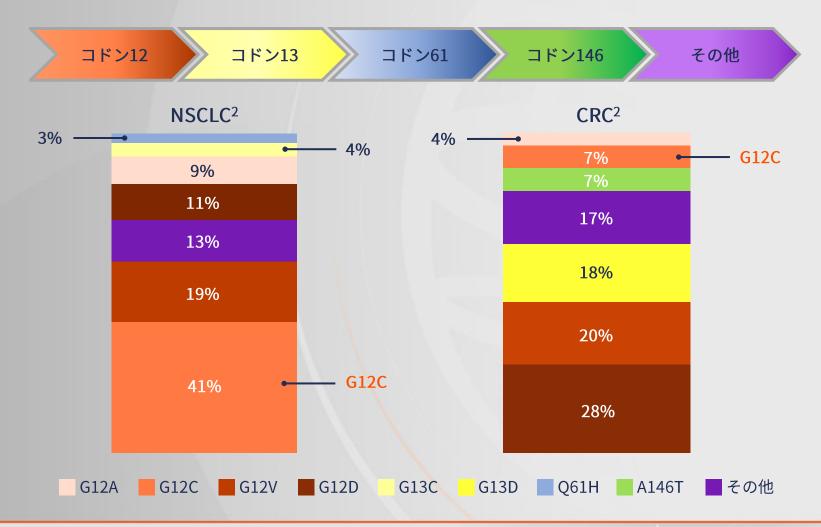
標的化が可能性として考えられる肺がんにおける変異


肺がん全体において対処可能な変異の薬効範囲

標的化が可能性として考えられる肺腺がんにおける変異

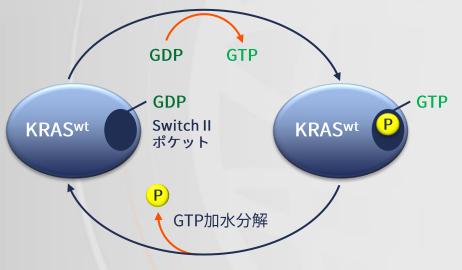

東アジアや西洋の集団で対処可能な変異の薬効範囲

標的化が可能性として考えられるCRCにおける変異


CRC全体において対処可能な変異の薬効範囲

KRAS変異の活性化

突然変異を起こしやすいKRASコドン1



KRAS GTPアーゼの活性

GEFsとGAPsはKRASの活性化および不活性化を制御する

GEFs (グアニンヌクレオチド交換因子)

SOS1、SOS2、GRB2、SHC1-4、RASGRP1-4、RAPGEF1-2、RADGRF1-2

GAPs (GTPアーゼ活性化タンパク質)

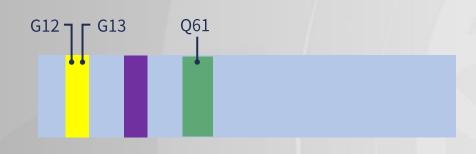
RASA1-3、RASAL1-3、DAB2IP、NF1、 SPRED1-3、SYNGAP1

非活性状態

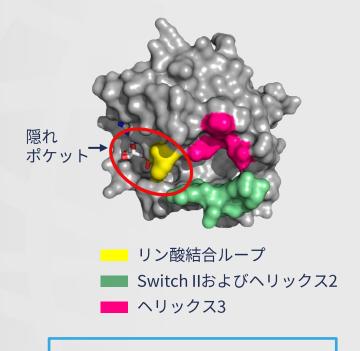
活性状態

KRASG12C変異

KRAS^{G12C}タンパク質を介したシグナル変換



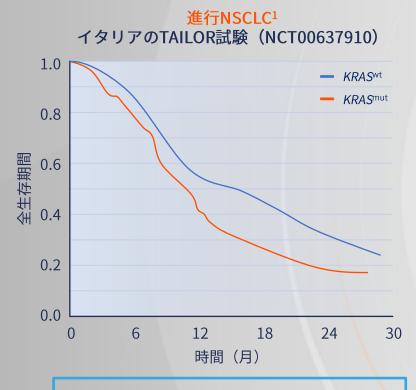
- システイン12(C12)変異は、内在性のGTPアーゼ活性を阻害し KRASをGTP結合状態に固定する^{1,2}
- ・ KRAS^{G12C}の構造的な活性化は、細胞の生存と増殖を促進し、結果 として免疫逃避をもたらす²



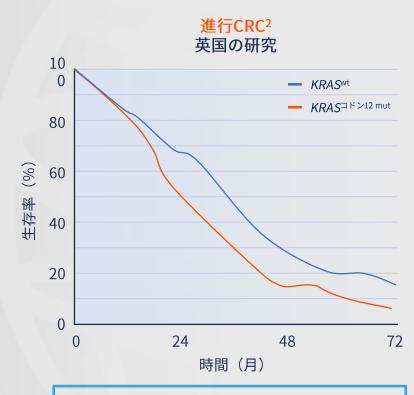
KRASの変異はすべて同じではない

コドン12、13、61の主要なKRAS変異は、KRASのGTP結合に影響する¹

- GTP結合
- Switch I: エフェクターとGAPの相互作用
- Switch II:GEFの相互作用
- KRAS、HRASまたはNRASのコドン12、13または61 における点突然変異は、GAPsのアルギニンフィンガーがGTPアーゼ部位に入るのを妨げることにより、GTP加水分解を阻害する2



 小分子の共有結合により、変異型 KRASが活性状態へ移行するのを阻 害する³



NSCLCおよびCRCにおける予後因子としてのKRAS変異

wtに関するKRAS変異の予後への影響

 OSが有意に悪化 (未調整HR=1.41、p=0.03; 調整HR=1.39、p=0.05)¹

 OSの有意な悪化はKRAS^{G12C}変異および KRAS^{G12V}変異に関連している(対KRAS^{wt}) (p=0.01 and p=0.02)²

進行NSCLCにおける予測バイオマーカー試験

ESMO、JLCSおよびNCCNガイドラインの推奨事項

分子サブタイプは、治療の意思決定に 必要である1-3

EGFRおよびBRAF変異の系統的検査; ALK、ROS1およびNTRK再配列の解析、 PD-L1発現の判定¹⁻³

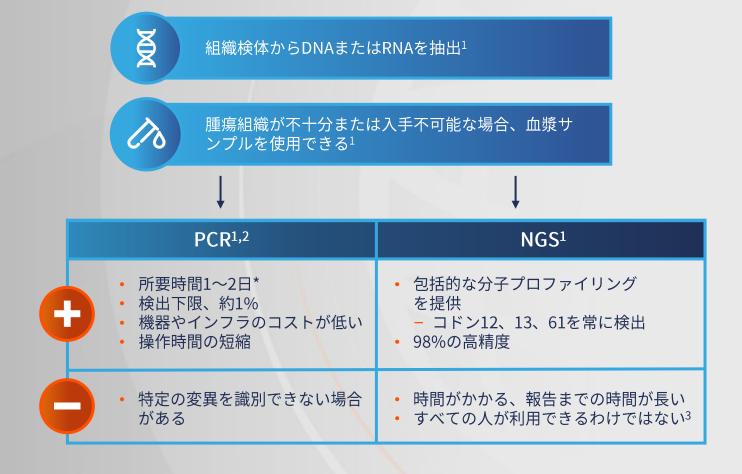
新たなバイオマーカーの検査: KRAS、MET、RETおよびERBB2/HER2¹

mCRCにおける予測バイオマーカー試験

ESMO、JLCSおよびNCCNガイドラインの推奨事項

治療方針の決定には、分子サブタイプ 分けが必要 1,2

KRAS/NRASおよびBRAF変異、および MMR/MSI状態の体系的な検査^{1,2}



新たなバイオマーカーの検査:*HER2*増幅/過剰発現および*NTRK*¹

KRAS変異の検査

推奨される方法論

KRAS変異検査に関するガイドライン推奨事項

ESMO、EMAおよびJSMOの推奨事項

NSCLC^{1,2}

ESMOガイドライン:

• NGSは、発がん性ターゲット用の腺癌のスクリーニングの標準的な手法として、採用が急速に進んでいる新しい技術である

EMA:

 KRAS^{G12C}変異の有無は、KRAS^{G12C} 阻害剤の投与開始に先立って確認し なければならない

CRC³

JSMO-ESMOガイドライン:

- セツキシマブとパニツムマブによる 治療前には必ずRAS検査を行い、 RASwtの状態を確認することが必須 である
- MMRタンパク質のためのIHC検査、 またはMSIのためのPCR検査が推奨 される。NGS検査については言及されていない

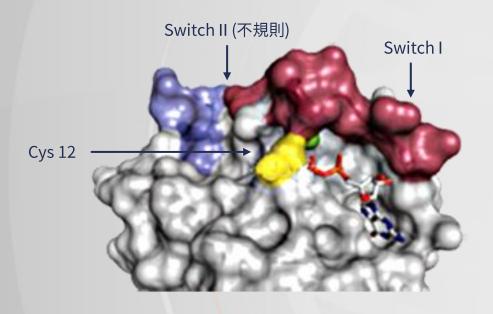
結論

*KRAS*変異はNSCLCやCRCで多く認められ、4つの頻発部位、 コドン12、13、61、146で発生する¹

KRAS^{G12C}変異は、下流シグナルの過活性化および制御不能な増殖を引き起こす^{1,2}

NSCLCやCRCでは分子サブタイプ分類が推奨され、 治療方針の決定に反映されるが、NCCNのみ*KRAS*変異の検査を 推奨している³⁻⁷

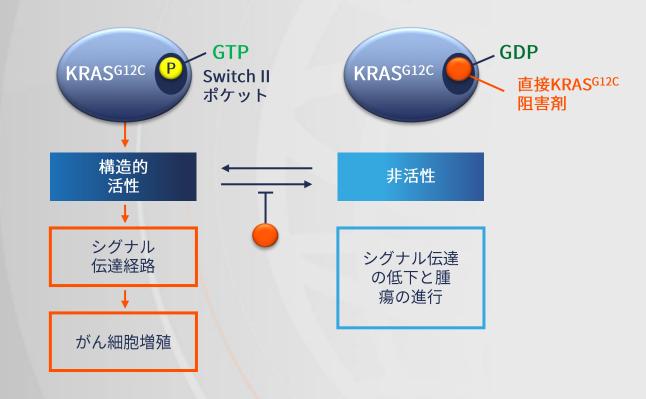
分子サブタイプ分類の推奨は、新しいKRAS標的治療が利用可能 になるにつれ、進化する可能性がある



臨床におけるKRAS^{G12C}変異の標的化

KRASG12C 結晶構造

Switch II ポケット1



- Switch領域は、エフェクタータンパク質と調節因子(GAPs とGEFs)の結合界面を形成している²
- Cys 12は、ヌクレオチドポケットとSwitch領域の両方に近接している¹

直接KRAS^{G12C}阻害剤:作用機序

Switch II ポケットの標的化

直接KRAS^{G12C}阻害剤

化学構造1,2

直接KRAS^{G12C}阻害剤

進行中の臨床試験と承認状況1

KRAS ^{G12C} 阻害剤	進行中の臨床試験	承認状況	
ソトラシブ	CodeBreaK 100、101、105、 200、201、Lung-MAP	EU ² および日本で ³ KRAS ^{G12C} 変異型 NSCLCの2L以降の治療薬として承 認、第III相	
アダグラシブ	KRYSTAL-1、-2、-7、-10、-12、-14	治験中、第Ⅲ相	
JDQ443	KontRASt-01、-02、-03	治験中、第Ⅲ相	
D-1553	NCT04585035	治験中、第I/II相	
GDC-6036	NCT04449874	治験中、第I相	
LY3537982	NCT04956640	治験中、第I相	
BI 1823911	NCT04973163	治験中、第I相	
JAB-21822	NCT05002270、NCT051 <mark>94</mark> 995	治験中、第I/II相	

直接KRAS^{G12C}阻害剤

進行中の臨床試験と承認状況1

KRAS ^{G12C} 阻害剤	進行中の臨床試験	承認状況	
ソトラシブ	CodeBreaK 100、101、105、 200、201、Lung-MAP	EU ² および日本で ³ KRAS ^{G12C} 変異型 NSCLCの2L以降の治療薬として承 認、第III相	
アダグラシブ	KRYSTAL-1 、-2、-7、-10、 -12 、-14	治験中、第Ⅲ相	
JDQ443	KontRASt-01、-02、-03	治験中、第Ⅲ相	
D-1553	NCT04585035	治験中、第I/II相	
GDC-6036	NCT04449874	治験中、第I相	
LY3537982	NCT04956640	治験中、第I相	
BI 1823911	NCT04973163	治験中、第I相	
JAB-21822	NCT05002270、NCT05194995	治験中、第I/II相	

ソトラシブ単剤療法:有効性

CodeBreak 100: KRAS^{G12C}変異固形がん患者を対象とした第I/II相非盲検試験

- 進行性NSCLC: 第II相データ、124名の患者を対象に、 ソトラシブ単剤療法の奏効を評価¹
 - ORR、37.1%
 - mDOR、11.1ヵ月
 - mPFS、6.8か月
 - mOS、12.5ヵ月

- 進行性NSCLC: 2年データ、174名の患者を対象に、ソトラシブ単剤療法への奏効を評価²
 - ORR、40.7%
 - mDOR、12.3ヶ月
 - mPFS、6.3か月
 - mOS、12.5ヵ月

- 進行性CRC: 第II相データ、 62名の患者を対象に、ソトラシブ単剤療法への奏効を評価³
 - ORR、9.7%
 - mDOR、4.2ヶ月
 - mPFS、4.0か月
 - mOS、10.6か月

ソトラシブ単剤療法:安全性

CodeBreak 100: KRAS^{G12C}変異固形がん患者を対象とした第I/II相非盲検試験

- 第I相データ:ソトラシブ単剤療法を受けた進行性NSCLCの59
 名、進行性CRC42名、およびその他固形がん28名の患者が対象¹
 - TRAE, 56.6%
 - グレード3または4のAE、11.6%
- 57
- 最も一般的なAE:下痢(29.5%)、 疲労感(23.3%)、悪心(20.9%)

- 進行性NSCLC:第II相データ、 ソトラシブ単剤療を受けた 126名の患者が対象²
 - TRAE, 69.8%
 - グレード3または4のAE、20.1%
 - 最も一般的なAE:下痢(31.7%)、悪心(19.0%)、 ALTの増加(15.1%)、ASTの増加(15.1%)

ソトラシブ単剤療法:NSCLCにおける一次治療

CodeBreaK 201:第II相非盲検試験

NCT04933695

治験開始:2022年1月完了予定:2023年8月

ソトラシブ960mg毎日投与

ソトラシブ240mg毎日投与

170名 未治療*ステージ4のNSCLC 成人患者で*KRAS*^{G12C}変異、 PD-L1<1%および/または *STK11*STK11共存変異を有する 主要評価項目: 最長6年のORR

アダグラシブ単剤療法:有効性

KRYSTAL-1:第I/II相非盲検試験

 進行性NSCLC: 第I/II相データ、116名の患者を対象に、 アダグラシブ単剤療法への奏効を評価1

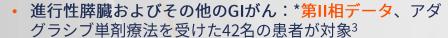
- ORR、43%
- DCR、80%
- mDOR、8.5ヶ月
- mPFS、6.5ヵ月
- mOS、12.6ヶ月

- 奏効率、22%
- DCR 87%
- mDOR、4.2ヶ月
- mPFS、5.6か月

- 進行性膵臓がんおよびその他のGIがん:*第II相データ、 治療歴のある27名の患者を対象に、アダグラシブ単剤療法 への奏効を評価3
 - PR、41%
 - DCR、100%
 - mPFS[†]、6.6ヶ月

アダグラシブ単剤療法:安全性

KRYSTAL-1:第I/II相非盲検試験



- 安全性、忍容性および薬物動態に基づいて、RP2Dは 600mgをBIDとした
- TRAE, 92%
- グレード3または4のAE、36%
- 最も一般的なAE:悪心(80%)、下痢(70%)、 嘔吐(50%)、疲労感(45%)

- 進行性NSCLC: 第I/II相データ、アダグラシブ単剤療法を 受けた116名の患者が対象2
 - TRAE, 97%
 - グレード3または4のAE、43%
 - 最も一般的なAE:下痢(63%)、悪心(62%)、 嘔吐(47%)、疲労感(41%)

- TRAE, 91%
- グレード3または4のAE、21%
- 最も一般的なAE:悪心(48%)、下痢(43%)、 嘔吐(43%)、疲労感(29%)

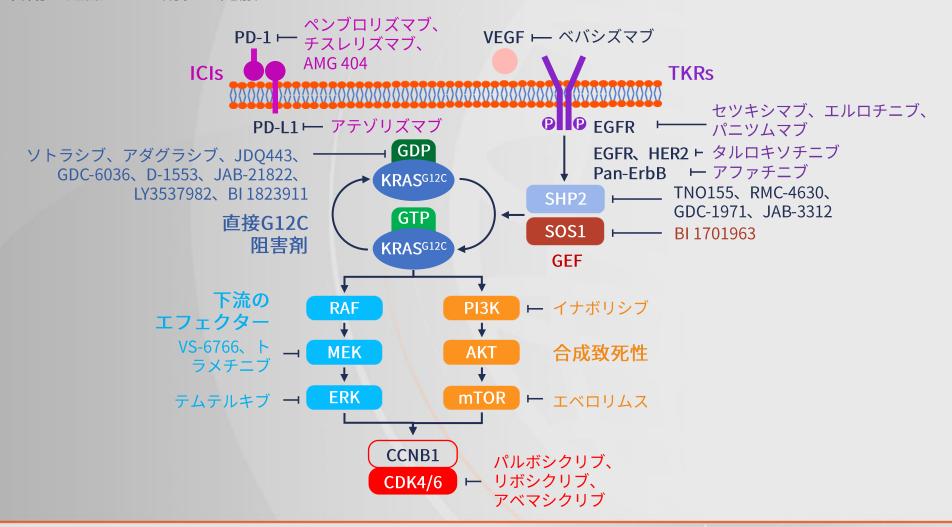
JDQ443単剤療法:有効性と安全性

KontRASt-01:第lb/II相非盲検試験

• 用量漸増試験:進行性NSCLC患者20名および進行性CRC 患者16名

- RP2Dは200mgをBIDと決定
- NSCLCでのORRはRP2Dで57%
- 最も一般的なTRAE:疲労感(30.8%)、悪心(17.9%)、 浮腫(15.4%)、下痢(12.8%)、嘔吐(12.8%)

治療歴のあるNSCLC患者を対象としたKRAS^{G12C}阻害剤による第III相臨床試験


KRAS^{G12C}阻害剤vsドセタキセル

	ソトラシブ CodeBreaK 200 (NCT04303780)	アダグラシブ KRYSTAL-12 (NCT04685135)	JDQ443 KontRASt-02 (NCT05132075)
主要データ 確定予定	2022年7月	2023年8月	2024年8月
患者資格	KRAS ^{G12C} 変異を有す る局所進行性かつ切 除不能または転移性 のNSCLC	<i>KRAS</i> ^{G12C} 変異を有す る転移性NSCLC	<i>KRAS</i> ^{G12C} 変異を有す る局所進行性かつ切 除不能または転移性 のNSCLC
主要評価項目	PFS	PFS	PFS

併用戦略の可能性

直接KRAS^{G12C}阻害剤に追加して、耐性を克服¹⁻³

結論

複数のKRAS^{G12C}阻害剤が開発段階にあり、ソトラシブは治療歴のあるNSCLCに対して承認され、NSCLCとCRCの両方で有望な結果を示す その他の薬剤もある¹⁻⁵

いくつかの直接KRAS^{G12C}阻害剤(ソトラシブ、アダグラシブ、JDQ443)は第III相試験中で、治療歴のある**進行性NSCLC**におけるドセタキセルと比較検討⁶⁻⁸

直接KRAS^{G12C}阻害剤と細胞シグナル阻害剤、ICI、汎KRAS阻害剤と の併用により、固形がん患者の予後をさらに改善するための研究が 精力的に行われている⁹

KRAS標的治療薬に対する耐性への取り組み

KRAS^{G12C}阻害剤

耐性に対する継続的な課題

奏効を制限し、疾患の進行を促進する<mark>内因性</mark>および<mark>後天性の耐性</mark>が、 直接KRAS^{G12C}阻害剤による治療における大きな課題である¹

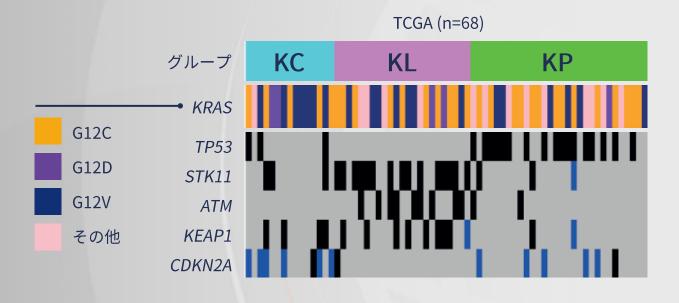
反応

• ソトラシブ/アダグラシブの臨床試験において、約50%の患者では有意な腫瘍の縮小が見られない¹

- 約10%の患者が原疾患の進行を経験する
- 初期に客観的奏効や病勢安定を示した患者も皆、 いずれは進行する¹

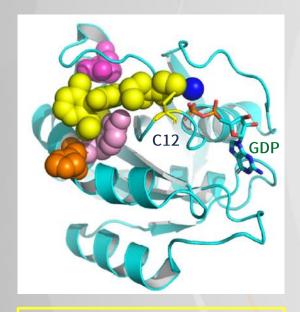
内因性耐性

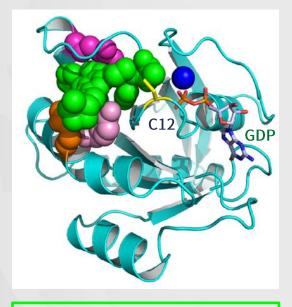
KRASの二次変異は、別のエフェクターがシグナル伝達を永続させることを意味する²


後天性耐性

治療の選択的圧力によって 促進される¹

KRASおよび共存変異


肺腺癌における共存変異の同定


KCサブグループ: CDKN2A/B非活性化および低TTF1
 KLサブグループ: STK11/LKB1変異
 KPサブグループ: TP53変異

KRAS^{G12C}阻害剤結合部位における後天性ミスセンス変異¹⁻²

ソトラシブ

アダグラシブ

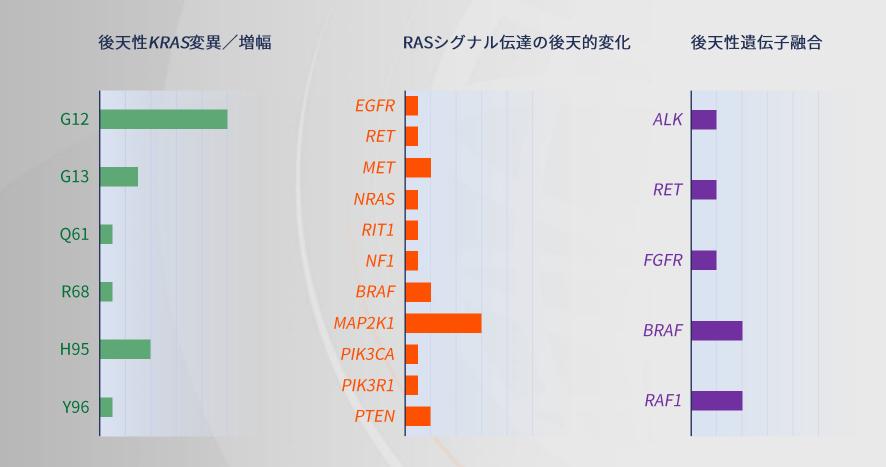
後天性耐性のメカニズム

KRYSTAL-1試験におけるアダグラシブ抵抗 (N=38)

- 組織サンプルまたはctDNAのNGSは、病勢進行時に分析された
- 患者: NSCLC (27例) 、CRC (10例) 、虫垂がん (1例)

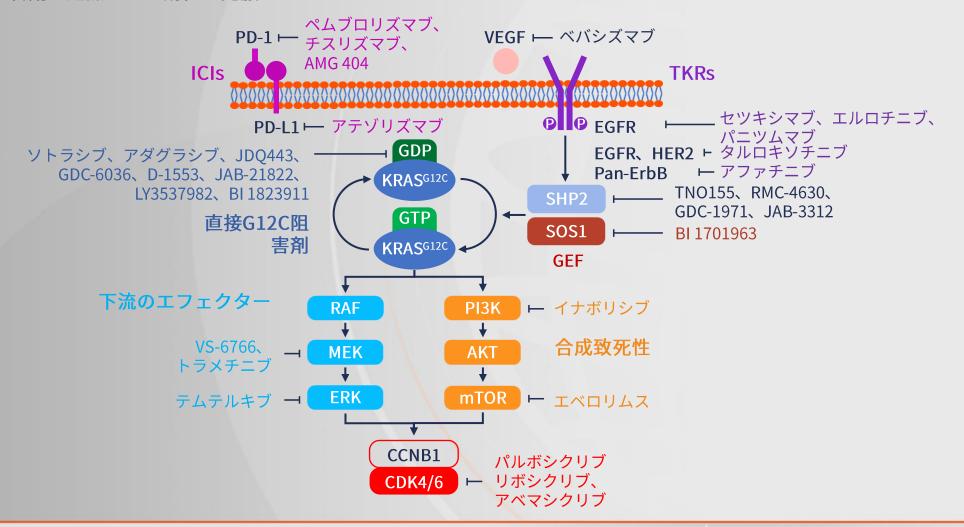
38例の患者が病勢進行を経験し、うち17例 が同定可能な耐性メカニズムを有していた

KRAS変化


- SIIPのR68、H95およびY96の後天性 耐性によりアダグラシブの結合が妨害される
- 変異の活性化、例えば G12D/V/R、 G13DおよびQ61H
- KRAS^{G12}対立遺伝子を高次元で増幅

バイパス機構

- MET增幅
- NRAS、BRAF、MAP2K1および RETに おける変異活性
- 発がん性融合、例えば ALK、RET、 BRAF、RAF1およびFGFR3
- NF1およびPTENの機能喪失型変異


KRYSTAL-1試験で確認された耐性メカニズム (n=17)

併用戦略の可能性

直接KRAS^{G12C}阻害剤に追加して、耐性を克服¹⁻³

ソトラシブの臨床試験

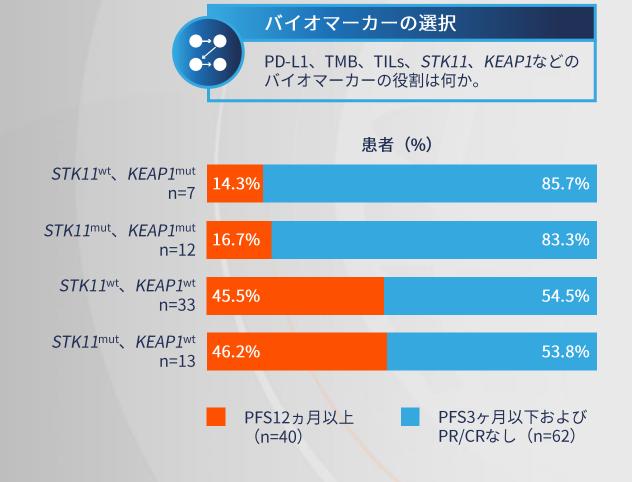
試験の詳細	併用薬	結果
CodeBreaK 101 NCT04185883 ・第Ib/II相 ・固形がん	 AMG 404 トラメチニブ RMC-4630 アファチニブ ペムブロリズマブ アムブロリズマブ アントナセド/ エベロリムス ドセタキセル 	 ソトラシブ+アファチニブ (NSCLC) ・新たなAEは観察されていない ・ORR 20.0~34.8%¹ ソトラシブ+トラメチニブ (固形がん) ・新たなAEは観察されていない ・mDOR、84日² ソトラシブ+パニツムマブ (CRC) ・新たなAEは観察されていない ・mDOR、4.4か月³ 主要データ確定:2024年8月
NCT05054725 • 第II相 • NSCLC	RMC-4630	主要データ確定:2023年3月
RAMP203 NCT05074810 • 第I/II相 • NSCLC	VS-6766	主要データ確定:2023年12月
NCT05313009 • 第I/II相 • NSCLC	タルロキソチニブ	主要データ確定:2023年12月

アダグラシブの臨床試験

試験の詳細	併用薬	結果
KRYSTAL-1 NCT03785249 • 第I/II相 • 固形がん	ペムブロリズマブセツキシマブアファチニブ	アダグラシブ+セツキシマブ(CRC) • TEAE、100%;グレード3/4 AEs、16% • 奏効率43%;DCR、100% ¹ 主要データ確定:2022年12月
KRYSTAL-2 NCT04330664 • 第I/II相 • CRC + NSCLC	TNO155	主要データ確定:2022年9月
KRYSTAL-7 NCT04613596 • 第II相 • NSCLC	ペムブロリズマブ	主要データ確定:2023年10月
KRYSTAL-10 NCT04793958 • 第III相 • CRC	セツキシマブ対mFOLFOX6また はFOLFIRI	主要データ確定:2023年9月
KRYSTAL-14 NCT04975256 • 第I相 • CRC + NSCLC	BI 1701963	主要データ確定:2023年11月
KRYSTAL-16 NCT05178888 ・第I相 ・固形がん	パルボシクリブ	主要データ確定:2023年12月

JDQ443の臨床試験

試験の詳細	併用薬	結果
KontRASt-01 NCT04699188 • 第I/II相 • 固形がん	TNO155、チスレリズマブ	主要データ確定:2024年8月
KontRASt-03 NCT05358249 ・第I/II相 ・固形がん	トラメチニブリボシクリブセツキシマブ	治験開始:2022年7月 主要データ確定:2025年4月


JAB-21822、GDC-6036、LY3537982およびBI 1823911の固形がんにおける臨床試験

試験の詳細	併用薬	結果
JAB-21822 NCT05002270 • 第I/II相	セツキシマブ	主要データ確定:2023年7月
GDC-6036 NCT04449874 • 第I相	アテゾリズマブセツキシマブベバシズマブイナボリシブ	主要データ確定:2023年8月
LY3537982 NCT04956640 • 第I相	 アベマシクリブ エルロチニブ ペムブロリズマブ テムテルキブ TNO155 	主要データ確定:2023年10月
BI1823911 NCT04973163 • 第I相	BI 1701963	主要データ確定:2024年6月

KRAS^{G12C}変異を有する患者のバイオマーカー

バイオマーカーは治療転帰の最適化に役立つか。

KRASを標的とする新しいアプローチ

異なる標的部位とメカニズム

GDP/GTP KRASG12C阻害剤1

- GTP/GDP KRAS^{G12C}のSIIPに結合
- 前臨床試験で、ソトラシブ/アダグラシブ に耐性のある細胞株において、抗がん作用 が示された

SOS1::汎KRAS阻害剤⁴

- BI 1701963はSOS1を標的とし、KRAS-GDP への結合を阻害し KRAS-GTPの活性化を阻 止する
- 進行中の単剤および併用での臨床試験

KRASG12D阻害剤^{2,3}

- KRAS^{G12D}は、PCおよびCRCでは最も多い KRAS変異で、NSCLCにおいては2番目に多 い変異である
- MRTX1133は非共有結合性で、選択性の強いKRAS^{G12D}阻害剤である

汎KRAS mRNAワクチン^{5,6}

- V941(mRNA-5671/V941)はtKRAS^{G12C}、 KRAS^{G12D}、KRAS^{G12V}およびKRAS^{G13D}を標的 とする
- 単剤およびペンブロリズマブとの併用での 第I相試験

直接KRAS^{G12C}阻害剤への耐性は、共存変異または後天性KRAS変異お よびバイパス機構が原因である可能性がある1

直接KRAS^{G12C}阻害剤と上流、下流、細胞周期、免疫チェックポイ ント阻害剤を用いた多くの併用療法が、耐性の克服を目指して研究 されている2

新薬、例えばKRAS^{G12C}GTP/GDP、KRAS^{G12D}および汎KRAS阻害剤が 臨床試験の初期段階にある3-8

