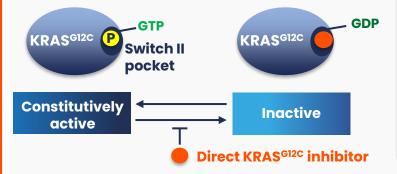

Investigating KRAS^{G12C} inhibitors: How might they improve outcomes for patients with solid tumours?

Practice aid from a touchTALKS®

For more information, visit www.touchoncology.com/education/


Why target KRAS in solid tumours?

KRAS signalling controls cell survival and proliferation^{1,2}

Actin cytoskeletal organization

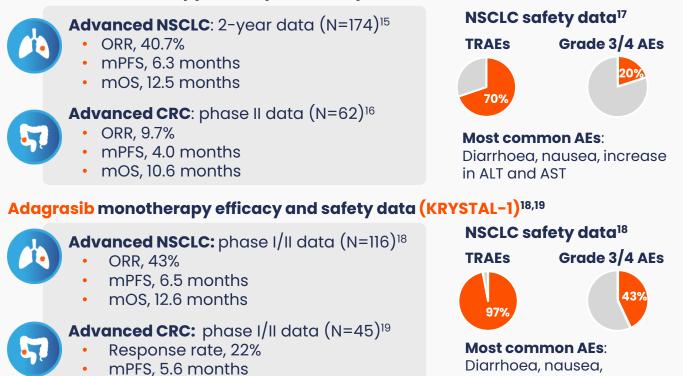
The KRAS switch II pocket forms the binding interface for GAPs and GEFs and represents an actionable target⁶

KRAS mutations in NSCLC and CRC

- Mutation incidence: >30%³
- KRAS^{G12C} mutations represent 41% of KRAS alterations in NSCLC and 7% in CRC²
- Associated with significantly worse OS relative to KRAS^{wt;4,5}

Molecular subtyping guidelines⁷⁻¹²

- Molecular subtyping is recommended for NSCLC and CRC and informs treatment decisions
- Only the NCCN currently recommend testing for KRAS mutations in advanced NSCLC and metastatic CRC
- According to JSMO-ESMO guidelines, RAS testing to confirm RAS^{wt} status in CRC is mandatory before treatment with cetuximab or panitumumab
- Recommendations are likely to evolve as novel KRAS-targeted treatments become available
- *KRAS* mutations can be detected by PCR and NGS


Key KRAS ^{612C} inhibitors ⁶	Ongoing clinical trials	Approval status	
Sotorasib	CodeBreaK 100, 101, 105, 200, 201, Lung-MAP	Approved in the EU ¹³ and Japan ¹⁴ for ≥2L treatment of <i>KRAS</i> ^{G12C} -mutated NSCLC, phase III	
Adagrasib	KRYSTAL-1, -2, -7, -10, -12, -14	Investigational, phase III	
JDQ443	KontRASt-01, -02, -03	Investigational, phase III	
D-1553, GDC-6036, LY3537982, BI 1823911 and JAB-21822		Investigational, phase I/II	

www.touchrespiratory.com/education/

Clinical trials with direct KRAS^{G12C} inhibitors

Sotorasib monotherapy efficacy and safety data (CodeBreak 100)¹⁵⁻¹⁷

JDQ433 monotherapy efficacy and safety data (KontRASt-01)²⁰

Dose escalation study in advanced NSCLC

- (n=20) and **advanced CRC** (n=16)
 - RP2D: 200 mg twice daily
 - ORR for NSCLC, 57% at RP2D

Most common AEs: Fatigue, nausea, oedema, diarrhoea, vomiting

vomiting, fatigue

Resistance to KRAS^{G12C} inhibitors

~50% of patients in clinical trials with sotorasib/adagrasib do not experience significant tumour shrinkage²¹

All patients who initially experience an objective response or stable disease with a KRAS^{G12C} inhibitor will eventually progress²¹

Resistance to direct KRAS^{G12C} inhibitors may be caused by **co-mutations**, **acquired** *KRAS* **mutations** and **bypass mechanisms**²²

Direct KRAS^{G12C} inhibitor combinations with upstream, downstream, cell cycle and immune checkpoint inhibitors are being investigated to overcome resistance^{6,23-25}

www.touchrespiratory.com/education/

Abbreviations and references

2L	Second line	m	median
AE	Adverse event	NCCN	National Comprehensive Cancer Network
ALT	Alanine aminotransferase	NGS	Next-generation sequencing
AST	Aspartate aminotransferase	NSCLC	Non-small cell lung cancer
CRC	Colorectal cancer	ORR	Objective response rate
ESMO	European Society of Medical Oncology	OS	Overall survival
GAP	GTPase activating proteins	PCR	Polymerase chain reaction
GDP	Guanosine diphosphate	PFS	Progression-free survival
GEF	Guanine nucleotide exchange factor	RP2D	Recommended phase II dose
GTP	Guanosine triphosphate	TRAE	Treatment-related AE
JSMO	Japanese Society of Medical Oncology	wt	wildtype

Burns TF, et al. J Clin Oncol. 2020;38:4208-18. 1.

Huang L, et al. Signal Transduct Target Ther. 2021;6:386. 2.

3. Timar J, Kashofer K. Cancer Metastasis Rev. 2020;39:1029-38.

- 4. Marabese M, et al. Oncotarget. 2015;6:34014-22.
- 5. Jones RP, et al. Br J Cancer. 2017;116:923-9.
- Kwan AK, et al. J Exp Clin Cancer Res. 2022;41:27. 6.
- NCCN. NCCN Guidelines: Non-small cell lung cancer. Version 2.2022. Available at: https://bit.ly/3apBSW0 7. (accessed 10 May 2022).
- Planchard D, et al. Ann Oncol. 2018;29:iv192-237. 8.
- Akamatsu H, et al. Int J Clin Oncol. 2019;24:731-70. 9.
- NCCN. NCCN Guidelines: Colon cancer. Version 1.2022. Available at: https://bit.ly/3apBSW0 (accessed 10 May 10. 2022).
- 11. Yoshino T, et al. Ann Oncol. 2018;29:44-70.
- Veluswamy R, et al. J Mol Diagn. 2021;23:507-20 12.
- Sotorasib SmPC. Available at: https://bit.ly/3R6XG98 (accessed 1 May 2022). 13.
- PMDA. Available at: https://bit.ly/3Avkv0z (accessed 1 May 2022). 14.
- Dy GK, et al. AACR Annual Meeting. April 2022. Abstract CT008.
 Fakih MG, et al. Lancet Oncol. 2022;23:115–24.
- 17.
- Skoulidis F, et al. N Engl J Med. 2021;384:2371-81.
- Spira A, et al. J Clin Oncol. 2022;40(Suppl. 16):9002. 18. 19.
- Weiss J, et al. Ann Oncol. 2021;32(Suppl. 5):S1283-346. LBA6. 20. Tan DS, et al. AACR Annual Meeting. April 2022. Abstract CT033.
- Blaquier JB, et al. Front Oncol. 2021;11:787585. 21.
- 22. Awad MM, et al. N Engl J Med. 2021;384:2382-93.
- 23. Palma G, et al. NPJ Precis Oncol. 2021;5:98.
- 24. Dunnett-Kane V, et al. Cancers. 2021;13:151.
- 25. Negri F, et al. Int J Mol Sci. 2022;23.4120.

The guidance provided by this practice aid is not intended to directly influence patient care. Clinicians should always evaluate their patients' conditions and potential contraindications, and review any relevant manufacturer product information or recommendations of other authorities prior to consideration of procedures, medications, or other courses of diagnosis or therapy included here.

Our practice aid coverage does not constitute implied endorsement of any product(s) or use(s). touchRESPIRATORY cannot guarantee the accuracy, adequacy or completeness of any information, and cannot be held responsible for any errors or omissions.

ACCOUNTS OF

