Implementing optimal stewardship strategies to combat antibiotic resistance

Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in touchIME activities
- touchIME accepts no responsibility for errors or omissions

Effective MDT management for infection control

Dr Esmita Charani

Senior Lead Research Pharmacist Imperial College London London, UK

Why is a multidisciplinary team approach needed for antimicrobial stewardship?

An expert MDT is needed to implement an AMS

AMS focus: prevention, diagnosis and treatment of infection¹

Core MDT*

- Consultant microbiologist^{1,2}
- Infectious diseases specialist^{1,2}
- Acute care physician²
- Surgeon²
- Senior member of the pharmacy management team^{1,2}
- Anaesthetist²
- Paediatrician²
- Senior nurse^{2,3}
- Primary care representative^{2,3}
- IT experts¹
- Local authorities³

Key roles⁴

- Leadership
- Accountability & responsibilities
- Monitoring
- Reporting
- Education & training
 - AMS actions

^{*}In resource-limited settings or small hospitals, the MDT may comprise less specialized practitioners, such as GPs and non-clinical pharmacists.¹ AMS, antimicrobial stewardship; GP, general practitioner; IT, information technology; MDT, multidisciplinary team.

^{1.} Mendelson M, et al. Clin Microbiol Infect. 2020;26:447–53; 2. Public Health England 2015. Antimicrobial stewardship toolkit for English hospitals. Available at: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/417032/Start_Smart_Then_Focus_FINAL.PDF (accessed 14 January 2022); 3. Alividza V. Nurs Times. 2017;113:22–5; 4. WHO 2019. Antimicrobial stewardship. Available at: www.who.int/publications-detail-redirect/9789241515481 (accessed 14 January 2022).

What do you think best practice should be for communication between clinicians so the MDT operates effectively?

Organizational strategies are essential to ensure successful operation of the MDT

A clinical leader must be identified from the core MDT^{1,2}

The MDT can reinforce policy implementation

Development of an

AMS plan using a

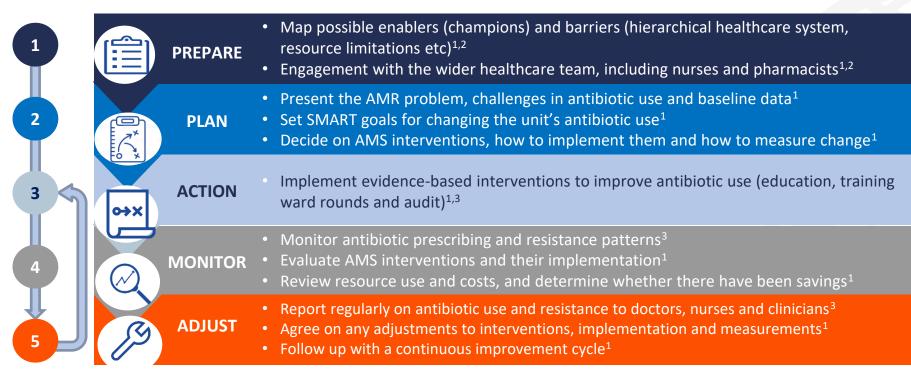
framework of

behaviour change^{2,3}

Coalition building and cross-boundary working^{3,4}

Creating a high clinical and managerial profile for infection in the hospital^{3,4}

AMS, antimicrobial stewardship; MDT, multidisciplinary team.


- 1. Mendelson M, et al. Clin Microbiol Infect. 2020;26:447-53; 2. Gregory JR, et al. US Pharm. 2018;43:HS-7-HS-12;
- 3. Murray E, Holmes A. J Antimicrob Chemother. 2012;67(Suppl 1):i29-36; 4. Kpokiri EE, et al. Antibiotics. 2020;9:204.

How can clinicians in different countries with different cultures and resources implement an MDT approach to combat antibiotic resistance?

Establishing and measuring success of MDT AMS plan

AMR, antimicrobial resistance; AMS, antimicrobial stewardship; MDT, multidisciplinary team; SMART, specific, measurable, achievable, relevant, timebound.

- 1. WHO 2019. Antimicrobial stewardship. Available at: www.who.int/publications-detail-redirect/9789241515481 (accessed 14 January 2022);
- 2. Charani E, et al. PLoS One. 2019;14:e0209847; 3. Gregory JR, et al. US Pharm. 2018;43:HS-7-HS-12.

How can antimicrobial stewardship experts in higher-income and lower- and middle-income countries collaborate to address antimicrobial resistance?

Key factors for implementing AMS programmes

Political commitment and leadership are critical to implement an AMS agenda and provide resources¹

Global research and development is required on best practices in agriculture, the development of antimicrobials and diagnostic methods²

Improved access to amicrobial agents is required in middle- and low-income countries³

Global, multi-stakeholder agreement is needed to coordinate resource, engage stakeholders and secure binding commitment for action²

AMS, antimicrobial stewardship.

^{1.} WHO 2018. Tackling antimicrobial resistance (AMR) together. Available at: www.who.int/antimicrobial-resistance/publications/Tackling-AMR-multisectoral-coordination-june2018.pdf?ua=1 (accessed 14 January 2022); 2. IACG 2018. Available at: www.who.int/antimicrobial-resistance/publications/Tackling-AMR-multisectoral-coordination-june2018.pdf?ua=1 (accessed 14 January 2022); 2. IACG 2018. Available at: www.who.int/antimicrobial-resistance/publications/Tackling-AMR-multisectoral-coordination-june2018.pdf?ua=1 (accessed 14 January 2022); 2. IACG 2018. Available at: www.who.int/antimicrobial-resistance/interagency-coordination-group/IACG Future global governance for AMR 120718.pdf (accessed 14 January 2022); 3. Charani E, et al. www.who.int/antimicrobial-resistance/interagency-coordination-group/IACG (accessed 14 January 2022); 3. Charani E, et al. <a href="publication-group-

Individualizing patient care for antibiotic-resistant infections

Prof. Antoni Torres

Professor of Pulmonology and Critical Care University of Barcelona Spain

What approach should be used for diagnosing microbial infections?

Diagnostic tools for microbial infections

General clinical signs and symptoms

Peripheral

Vital signs

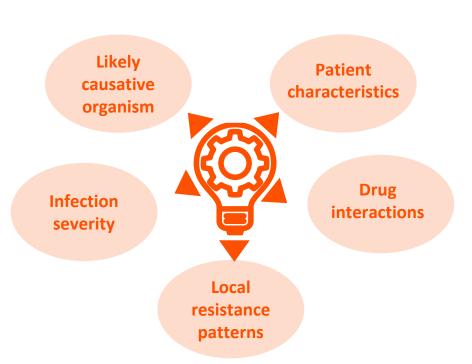
Changes in laboratory markers

Haematology

Biochemistry

Urinalysis

Microbiology



What criteria should clinicians use to select the most appropriate antimicrobial treatment?

Factors guiding antimicrobial treatment choice

Guidelines on common infections should be used as a reference by prescribers when choosing an antimicrobial therapy

- When initiating
- antimicrobial treatment, what factors should be considered to ensure it is appropriate for the
 - individual patient?

*Timeline of antimicrobial therapy

Initiate of antibiotics

Continue, de-escalate or stop

End of treatment

Early administration can reduce mortality and improve outcomes

Often dependent on infection site, severity and causative organism

- De-escalation based on culture results
- Elimination of redundant therapy can more effectively target causative pathogen

How should patients receiving antimicrobial treatment be monitored?

Recommendations for monitoring patients receiving antimicrobial treatment

Response to antimicrobial reviewed every:

48–72 hours (oral)

24 hours (IV)

Diagnostic evaluation for potential treatment failure³ Address any treatment failure via empirical adjustment to antibiotic therapy³

END

Final course length determined²

IV, intravenous.

START

3. Bassetti M, et al. Intensive Care Med. 2018;44:73-5.

^{1.} Jethwa S. 2016. Available from https://pharmaceutical-journal.com/article/ld/principles-of-initiating-antimicrobial-therapy-and-empiric-prescribing (accessed 31 January 2022); 2. Public Health England. 2015. Available from: https://pharmaceutical-journal.com/article/ld/principles-of-initiating-antimicrobial-therapy-and-empiric-prescribing (accessed 31 January 2022); 2. Public Health England. 2015. Available from: https://www.gov.uk/government/publications/antimicrobial-stewardship-start-smart-then-focus (accessed 31 January 2022);

New and emerging management options for antibiotic-resistant infections

Prof. Ignacio Martin-Loeches

Professor in Intensive Care Medicine Trinity College, Dublin, Ireland

Why are new management options for antibiotic-resistant infections needed?

New management options are needed for multi- and extensively-drug resistant bacteria

High rates of mortality in the most vulnerable populations¹

Increased healthcare costs through lengthening hospital stays, utilization of resources and lost productivity²

Limited progress of worldwide initiatives to limit infections and provide appropriate treatments³

Evidence-based AMS programmes help to address these challenges

AMS, antimicrobial stewardship.

- 1. Cassini A, et al. Lancet Infect Dis. 2019;19:56-66; 2. Naylor NR, et al. Antimicrob Resist Infect Control. 2018;25:58;
- 3. WHO 2019. Available from: www.who.int/docs/default-source/documents/no-time-to-wait-securing-the-future-from-drug-resistant-infections-en.pdfsfvrsn=5b424d7_6 (accessed 18 January 2022).

What data support the use of new non-βlactamase inhibitor therapies for addressing antibiotic-resistant infections?

Non-β-lactamase inhibitors can be effective for the treatment of several types of infection

Plazomicin

- The phase III EPIC study in cUTIs, including acute pyelonephritis, reported plazomicin was noninferior to meropenem¹
- The phase III CARE study in HABP/VABP reported fewer deaths from day 14 to day 60 with plazomicin-based combination therapy²

Murepavadin⁶

- The phase III PRISM-MDR and PRISM-UDR studies of IV murepavadin halted due to a higher than expected frequency of acute kidney injury
- Development of inhaled murepavadin continues including for *Pseudomonas aeruginosa* infections in people with cystic fibrosis

Eravacycline

- The phase III IGNITE1 and IGNITE4 studies in cIAIs reported eravacycline was noninferior to ertapenem and meropenem, respectively^{3,4}
- Phase III trials of eravacycline vs ertapenem (NCT03032510) and levofloxacin (NCT01978938) for cUTI showed lower cure rates for eravacycline⁵

Colistin⁷

- Broad-spectrum activity against carbapenem-resistant pathogens
- Use is often limited because of nephrotoxicity
- Discrepancy exists between antimicrobial efficacy observed in laboratory testing vs clinical observation

cIAI, complicated intra-abdominal infection; cUTI, complicated urinary tract infection; HABP, hospital-acquired bacterial pneumonia; IV, intravenous; VABP, ventilator-associated bacterial pneumonia.

7. Doi Y. Clin Infect Dis. 2019;69(Suppl. 7):S565-75.

^{1.} Wagenlehner FME, et al. N Engl J Med. 2019;380:729–40; 2. McKinnel JA, et al. N Engl J Med. 2019;380:791–3; 3. Solomkin J, et al. JAMA Surg. 2017;152:224–32;

^{4.} Solomkin JS, et al. Clin Infect Dis. 2019;69:921–9; 5. Yusuf E, et al. J Clin Med. 2021;10:1068; 6. Provezani A, et al. Int J Clin Pharm. 2020;42:1016–25;

What is the potential role for β-lactamase inhibitors in treating antibiotic-resistant infections?

Combination therapy with β-lactamase inhibitors can help restore efficacy against MDR infections

cUTIs (including acute pyelonephritis)

Relebactam/imipenem/cilastatin:1

• Noninferior (at 250 mg and 125 mg relebactam) to imipenem/cilastatin, measured by microbiological response rates

Vaborbactam/meropenem:²

• Noninferior to piperacillin/tazobactam, measured by a composite outcome of complete resolution or improvement of symptoms

Avibactam/ceftazidime:³

Similar to the best available therapy, measured by clinical cure at the test-of-cure visit

cIAIs

Relebactam/imipenem/cilastatin:4

Noninferior (at 250 mg and 125 mg relebactam) to imipenem/cilastatin, measured by clinical response rates at DCIV

Avibactam/ceftazidime:³

• Clinical cure rate at the test-of-cure visit was higher with avibactam/ceftazidime vs best available therapy

^{1.} Sims M, et al. J Antimicrob Chemother. 2017;72:2616–26; 2. Kaye KS, et al. JAMA. 2018;319:788–9; 3. Carmeli Y, et al. Lancet Infect Dis. 2016;16:661–73;

Combination therapy with β-lactamase inhibitors can help restore efficacy against MDR infections

HAP and VAP

- Tazobactam/ceftolozane:¹
 - Noninferior to meropenem, measured by all-cause mortality at 28 days
 - 25% of patients were infected with *Pseudomonas aeruginosa*
- Avibactam/ceftazidime:²
 - Noninferior to meropenem, measured by clinical cure at a test-of-cure visit
 - 30% of patients were infected with Pseudomonas aeruginosa
- Relebactam/imipenem/cilastatin:³
 - Noninferior to tazobactam/piperacillin, measured by day 28 all-cause mortality and favourable clinical response at early follow-up
 - 18.9% of patients were infected with *Pseudomonas aeruginosa*

How can clinicians incorporate new and emerging therapies into their daily clinical practice?

Key factors for incorporating new and emerging therapies

Newer agents should be used within the context of AMR surveillance based on local epidemiology and the major clinical impact attributable to a specific AMR profile¹

Fast, robust and affordable antimicrobial susceptibility testing methods are in development to decrease the time required²

To combat the development of resistance, newer antibiotics should not be used indiscriminately but targeted at patients with specific therapeutic requirements³

