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Over the last decade, bioinformatics studies and case reports have found a significant association between proton pump inhibitor 
(PPI) use and the risk of microbial infection. However, the mechanism of increased infection risk remains unknown. Emerging 
molecular, cell biological and animal studies indicate that PPIs exhibit pleiotropic activity that suppresses inflammatory 

cytokines that are bona fide immune defence molecules. Accordingly, the purpose of this editorial is to discuss biologically plausible 
concepts for how PPIs may increase the risk of microbial infections.
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Proton pump inhibitors (PPIs) are a class of antacid drugs that are available by prescription and  

over-the-counter to treat gastro-oesophageal reflux disease in patients with a number of 

comorbidities, including chronic respiratory diseases, such as asthma, pulmonary arterial 

hypertension, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.1 Although 

they are generally regarded as safe and effective antacid drugs, there are growing medical 

concerns over their prolonged use.2 One of the concerns associated with long-term PPI use is the 

increased risk of microbial infections.3 Several bioinformatics studies and case reports indicate 

that PPI use is associated with the risk of community-acquired pneumonia.4–6 

Intriguingly, the increased infection risk with PPI use does not appear to be reproduced with the 

use of an alternate class of antacids, histamine H2-receptor antagonists (H2RAs), suggesting that it 

is unlikely that the change in gastric pH is responsible for the increased risk of infection in PPI users. 

Accordingly, no mechanistic data exist to explain why PPI use is associated with an increased risk 

of microbial infections. In this regard, emerging molecular, cell biological and preclinical in vivo data 

show that PPIs – but not H2RAs – possess biological activities targeted against several immune 

defence molecules, including tumour necrosis factor alpha (TNFα), interleukin (IL)-1 beta (IL-1β), 

IL-6 and nuclear factor kappa B (NFκB).7–9 Moreover, PPIs inhibit the activation of neutrophils and 

monocytes, and deplete intracellular and extracellular neutrophil reactive oxygen species (ROS) 

and nitric oxide (NO) to impair bactericidal activity.10 Additional studies also have reported that PPIs 

target inducible nitric oxide synthase (iNOS) and several members of the integrin family including 

CD11b (integrin αMβ2) and CD18 (integrin β2).7,10–13 Furthermore, several studies have reported 

significant regulation of TGFβ signalling and the Wnt/β-catenin pathway by PPIs to modulate cell 

fate, including epithelial-to-mesenchymal transition.7,14–16 

It is known that almost all of these biological processes are involved in innate immune defence 

mechanisms against invading pathogens, including bacteria, viruses and fungi. For example, 

members of the TNFα superfamily play a significant role in homeostatic processes, including the 

development and function of the immune system, such as activation of innate lymphoid cells 

and natural killer cells to limit infections.17 In addition, TNF is able to induce the expression of 

chemokines and adhesion molecules to participate in the recruitment of neutrophils to the site of 

infection to contain initial infections.18 In macrophages, TNF has been shown to activate NFκB to 

enforce an antimicrobial immune defence.19 Moreover, the generation of ROS and NO, two powerful 

antimicrobial effectors, is reported to be controlled by TNF.20,21 The NFκB pathway is central in the first 

line of defence against invading pathogens, in part, by being involved in the regulation of innate and 

adaptive immune response to support T-cell maturation and proliferation. In addition, this pathway 

is involved in the generation of inflammatory cytokines and other antimicrobial molecules that are 

necessary in the recruitment of phagocytes and for microbial clearance.22–24

Studies have also demonstrated that interleukins, such as IL-1β and IL-6 induce non-specific 

resistance to microbial infections.25,26 Another PPI-targeted molecule that is essential in mounting 
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an immune defence against microbial infection is iNOS. This inducible 

isoform of NO synthase, or the NO generated by iNOS, has been reported 

to be involved in controlling the intracellular growth of bacteria and in 

preventing bacterial infection-induced lethality in animal models.27,28 

Finally, integrins are involved in cellular processes, including cell adhesion, 

migration, T-cell activation and phagocytosis to support the immune 

system. For example, CD11b is expressed in macrophages, monocytes and 

dendritic cells, which are major cell types that are involved in the innate 

immune response against microbial infections.29 Furthermore, PPIs may 

have a direct or indirect effect on the gut microbiome, including bacterial 

overgrowth and imbalance in the composition of gut microbiota.3,30 

Conclusion
Emerging studies indicate that PPIs possess anti-inflammatory activity 

that extends from the inhibition of classic inflammatory molecules, 

such as TNFα, interleukins, iNOS and NFκB, to the suppression of 

adhesion molecules, such as ROS and nitrogen species, and the 

regulation of inflammatory cells, such as neutrophils and monocytes, 

without clear evidence about the mechanism of action. Although 

this multi-faceted, anti-inflammatory activity of PPIs could be 

harnessed for therapeutic purposes, downregulating inflammatory 

cells and molecules also impacts proper immune function, including 

a physiological response to microbial infection, which raises the 

question of whether the immunosuppressive potential of PPIs is the 

missing link between prolonged use of the drug and increased risk 

of infection in some patients. In this regard, additional molecular and 

pharmacovigilance studies are required to address the possibility of 

a causal relationship. In the meantime, clinicians should supervise at-

risk patients, including the elderly and immunocompromised, from 

possible harm related to long-term PPI use. q
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