touchEXPERT OPINIONS®

Moving *MET* into the clinic: Latest evidence for MET inhibitors in NSCLC

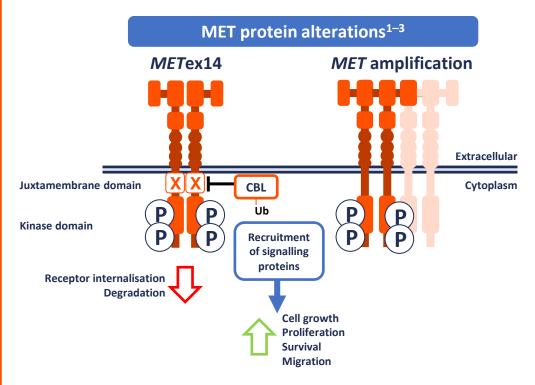
Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in touchIME activities
- touchIME accepts no responsibility for errors or omissions

MET inhibitor clinical efficacy: Update from ASCO 2021

Dr Enriqueta Felip

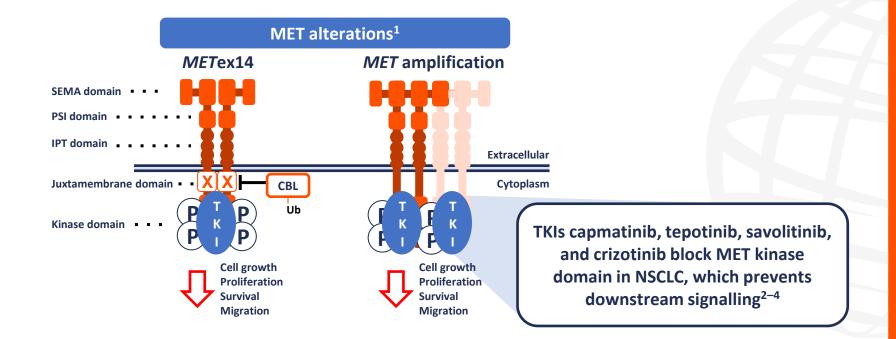
Head of the Thoracic and Head and Neck Cancer Unit, Vall d'Hebron Hospital Barcelona, Spain



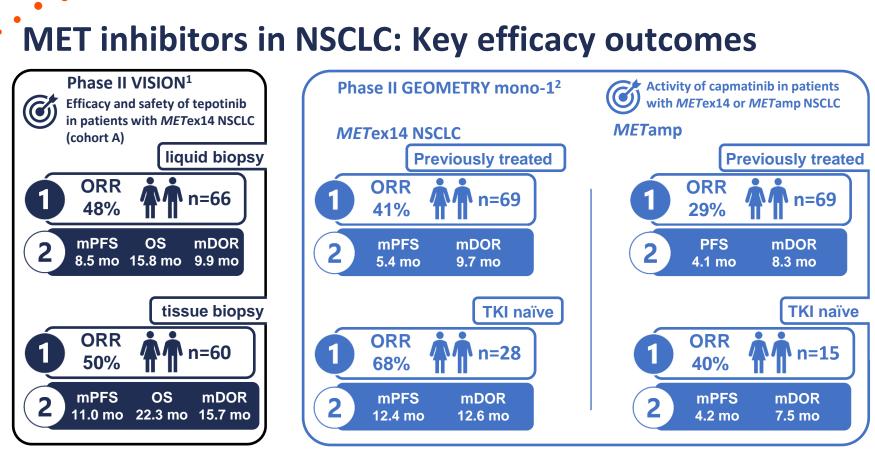
How significant is *MET* as a therapeutic target in patients with NSCLC?

MET mutations in NSCLC

- Patients with advanced or metastatic NSCLC⁴
- Older patients are affected, regardless of sex or smoking status⁵
- Majority of patients have only extrathoracic metastases (67.6%)⁵
- Mutations leading to *MET*ex14 are found in approximately 3–4% of patients with NSCLC⁶
- Patients with *MET*ex14 usually do not have other known molecular drivers of NSCLC⁶
- METex14 is a biomarker associated with poor prognosis⁶
- MET amplifications are found in approximately 1–6% of patients with NSCLC⁷


CBL, casitas B-lineage lymphoma; *MET*, mesenchymal–epithelial transition; *MET*ex14, *MET* exon 14 skipping mutation; NSCLC, non-small cell lung cancer; P, phosphorylated; Ub, ubiquitin. 1. Tan AC, et al. *Lung Cancer (Auckl)*. 2021;12:11–20; 2. Safi D, et al. *Transl Lung Cancer Res*. 2021;10:462–74; 3. Salgia R, et al. *Cancer Treat Rev*. 2020;87; 4. Paik PK, et al. *N Engl J* Med. 2020;383:931–43; 5. Digumarthy SR, et al. *Cancers*. 2019;11:2033; 6. Wu YL, et al. *Cancer Treat Rev*. 2021;95; 7. Wolf J, et al. *N Engl J Med*. 2020;383:944–57.

How do current data support the use of MET-inhibitor therapy in patients with MET+ NSCLC?

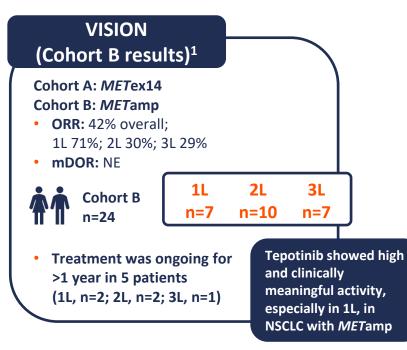


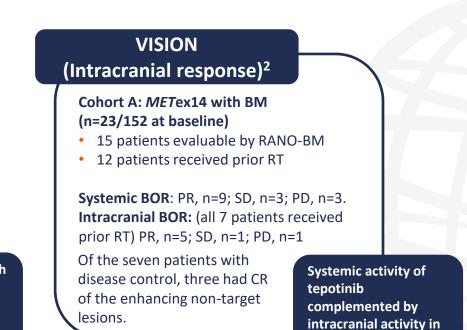
MET inhibitors: Mechanism of action

RESPIRATORY

CBL, casitas B-lineage lymphoma; IPT, immunoglobulin-plexins-transcription factors; MET, mesenchymal-epithelial transition; *MET*ex14, *MET* exon 14 skipping mutation; NSCLC, non-small cell lung cancer; P, phosphorylated; PSI, plexins-semaphorins-integrins; SEMA, semaphorins; TKI, tyrosine kinase inhibitor; Ub, ubiquitin. 1. Tan AC, et al. *Lung Cancer (Auckl)*. 2021;12:11–20; 2. Vansteenkiste JF, et al *Expert Rev Anticancer Ther*. 2019;19:659–71; 3. Markham A. *Drugs*. 2020;80:829–33; 4. Rehman S, Dy GK. *EMJ Respir*. 2018;6:100–11.

Data based on independent review results.


mDOR, median duration of response; MET, mesenchymal–epithelial transition; *MET*amp, *MET* amplification; *MET*ex14, *MET* exon 14 skipping mutation; mo, months; mPFS, median progression-free survival; NSCLC, non-small cell lung cancer; ORR, overall response rate; OS, overall survival; TKI, tyrosine kinase inhibitor. 1. Paik PK, et al. *N Engl J* Med. 2020;383:931–43; 2. Wolf J, et al. *N Engl J Med*. 2020;383:944–57.



What were the updated findings at ASCO 2021 for the VISION and GEOMETRY mono-1 studies in patients with *MET*+ NSCLC?

ASCO 2021: MET inhibitors in *MET*+ NSCLC

patients with BM

RESPIRATORY

1/2/3L, first-, second-, third-line; ASCO, American Society of Clinical Oncology; BM, brain metastases; BOR, best objective response; CR, complete response; mDOR, median duration of response; MET, mesenchymal-epithelial transition; *MET*amp, *MET* amplification; *MET*ex14, *MET* exon 14 skipping mutation; NE, not estimatable; NSCLC, non-small cell lung cancer; ORR, objective response rate; PD, progressive disease; PR, partial response; RANO-BM, Response Assessment in Neuro-Oncology Brain Metastases; RT, radiotherapy; SD, stable disease.

1. Le X, et al. J Clin Oncol.2021;39:suppl 15; abstr 9021; 2. Patel JD, et al. J Clin Oncol.2021;39:suppl 15; abstr 9084.

ASCO 2021: MET inhibitors in METex14 NSCLC

GEOMETRY mono-1 (Cohort 7 results)¹

- METex14 NSCLC (n=160) Treatment-naïve (Cohort 5b and 7)/ prior 1L or 2L of therapy (expansion Cohort 6 and 4)
- ORR: 67.9% Cohort 5b; 65.6% Cohort 7
- mPFS: 12.4 mo Cohort 5b; 10.8 mo Cohort 7
- mOS: for Cohorts 6 and 7: NR

Capmatinib in 1L treatment reported highest efficacy in patients with *MET*ex14 NSCLC

Systematic review²

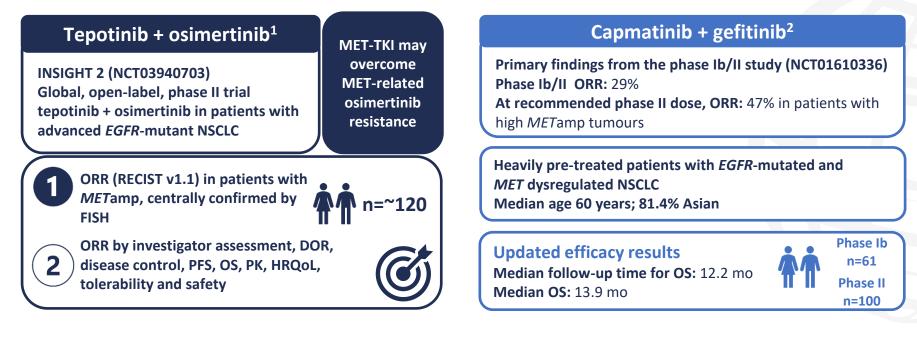
Review of original studies evaluating the clinical response of capmatinib in *MET*ex14 NSCLC

- Further studies support GEOMETRY mono-1 results
- Higher ORR achieved in treatment-naive patients
- Long-term follow-up trials needed

PROs demonstrated clinically meaningful improvements in cough, delayed time to lung symptom deterioration and preserved QoL³

1/2L, first-, second-line; ASCO, American Society of Clinical Oncology; MET, mesenchymal-epithelial transition; *MET*ex14, *MET* exon 14 skipping mutation; mo, months; mOS, median overall survival; mPFS, median progression-free survival; NR, not reached; NSCLC, non-small cell lung cancer; ORR, overall response rate; PRO, patient-reported outcome; QoL, quality of life.

1. Wolf J, et al. J Clin Oncol. 2021;39:suppl 15; abstr 9020; 2. Khan I, et al. J Clin Oncol. 2021;39:suppl 15; abstr e21150; 3. Wolf J, et al. J Clin Oncol. 2021;39:suppl 15; abstr 9056.



What were the key efficacy findings at ASCO 2021 for METinhibitor therapy in patients with advanced NSCLC and *MET* amplification?

ASCO 2021: MET inhibitors in EGFR-mutant NSCLC

Combination approaches for *MET* amp following acquired resistance to EGFR-TKI therapy

ASCO, American Society of Clinical Oncology; DOR, duration of response; *EGFR*, epidermal growth factor receptor; FISH, fluorescent *in situ* hybridization; HRQoL, health-related quality of life; MET, mesenchymal-epithelial transition; *MET*amp, *MET* amplification; mo, months; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PFS, progression-free survival; PK, pharmacokinetics; RECIST, Response Evaluation Criteria in Solid Tumours; TKI, tyrosine kinase inhibitor.

1. Zhu VW, et al. J Clin Oncol.2021;39:suppl 15; abstr TPS9136; 2. Wu YL, et al. J Clin Oncol.2021;39:suppl 15; abstr 9048.

How do the latest data affect current use of MET inhibitors in NSCLC and what are the potential future developments?

Combination EGFR-MET approaches

Small molecule TKIs + MET inhibition¹

Real-world study (N=70)

Crizotinib ± EGFR-TKI vs MET TKI mono vs CT

- Advanced EGFR-mutant NSCLC
- Progressed from prior EGFR-TKI through the acquisition of *MET*amp

Simultaneous inhibition of EGFR and MET improves clinical outcomes of patients with EGFR-mutant NSCLC and acquired METamp from prior EGFR-TKI therapy

Crizotinib + EGFR-TKI:

ORR, 47.5%; DCR, 84.0%; PFS, 5.0 mo; OS, 10.0 mo **Crizotinib**:

ORR, 40.0%; DCR, 70.0%; PFS, 2.3 mo; OS, 4.1 mo **CT**:

ORR, 18.2%; DCR, 50.0%; PFS, 2.9 mo; OS, 8.5 mo

EGFR-MET bispecific antibody²

CHRYSALIS (NCT02609776) Lazertinib ± amivantamab

Updated results

- EGFR-mutant NSCLC
- Progression on osimertinib without intervening CT (N=45)

• 36% confirmed response

- (1 CR; 15 PR)
- 44% remain on treatment (8.2 mo median follow up)
- mDOR: 9.6 mo
- mPFS: 4.9 mo

CR, complete response; CT, chemotherapy; DCR, disease control rate; EGFR, epidermal growth factor receptor; mDOR, median duration of response; MET, mesenchymalepithelial transition; *MET* amplification; mo, months; mPFS, median progression-free survival; NSCLC, non-small cell lung cancer; ORR, overall response rate; OS, overall survival; PFS, progression-free survival; PR, partial response; TKI, tyrosine kinase inhibitor. 1. Liu L et al. *J Clin Oncol*.2021:39:suppl 15: abstr 9043. 2. Bauml J. et al. *J Clin Oncol*.2021:39:suppl 15: abstr 9006.

ASCO 2021: Immunotherapy in MET-positive NSCLC

Multicentre study ICI and MET-TKI sequencing¹

43 patients with *MET* alterations; *MET*ex14 (n=29) 69% of patients had PD-L1 ≥50%

- mOS for the entire cohort: 24.4 mo
- Significantly longer mOS (48.3 vs 13.6 mo) in patients who received initial ICI (n=13) vs those who received initial TKI (n=11), *irrespective of PD-L1 expression and smoking history*
- 100% of patients who progressed after ICI received further treatment
- 50% of patients who progressed after TKI received subsequent therapy

TMB as prognostic biomarker in NSCLC²

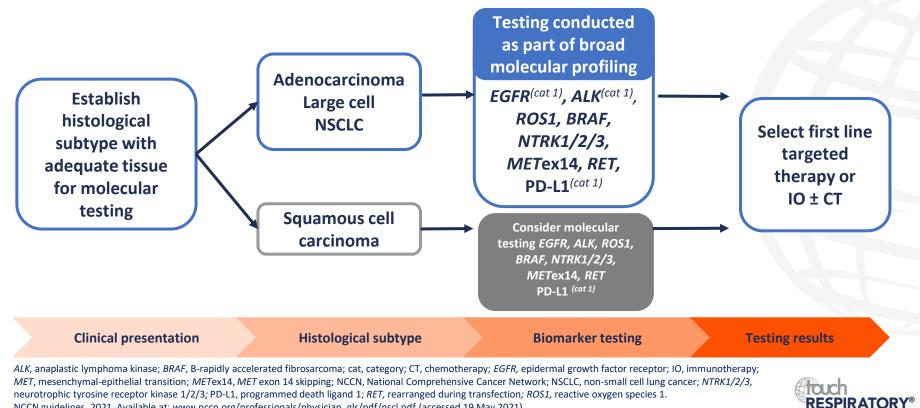
- MET-non-ex14 mutant patients (7/385) had significantly higher TMB than METex14 (10/385) and MET wild-type (368/385) sub-cohorts, respectively
- DCB was more common in patients with MET-non-ex14 mutations than METex14 and MET wild-type (66.7% vs 14.3%; 66.7% vs 29.9%, respectively)
- mPFS was significantly longer in *MET*-non-ex14-mutant subgroup than patients with *METex14* NSCLC (9.1 vs 2.1 mo)

ASCO, American Society of Clinical Oncology; DCB, durable clinical benefit; ICI, immune checkpoint inhibitor; *MET*, mesenchymal-epithelial transition; *MET*ex14, *MET* exon 14 skipping mutation; mo, months; mOS, median overall survival; mPFS, median progression-free survival; NSCLC, non-small cell lung cancer; PD-L1, programmed death ligand 1; TKI, tyrosine kinase inhibitor; TMB, tumour mutational burden. 1. Lau SCM, et al. *J Clin Oncol*. 2021;39:suppl 15: abstr e21123; 2. Li X. et al. *J Clin Oncol*.2021;39:suppl 15: abstr e21032.

Moving *MET*ex14 testing into the clinic

Dr Rebecca S Heist

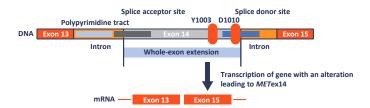
Associate Professor of Medicine Harvard Medical School Boston, MA, USA



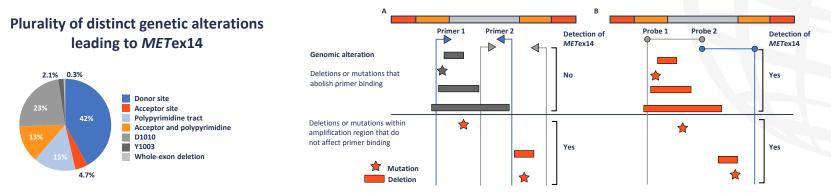
What are the current recommendations for testing *MET*ex14 in patients with NSCLC?

Molecular testing standard of care for NSCLC

NCCN guidelines encourage broad molecular profiling for advanced or metastatic disease


NCCN guidelines. 2021. Available at: www.nccn.org/professionals/physician gls/pdf/nscl.pdf (accessed 19 May 2021).

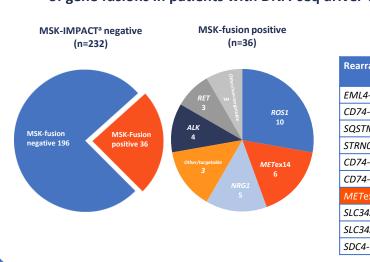
What are the challenges for testing and how can next-generation sequencing be used optimally to detect *MET*ex14?


Challenges for *MET*ex14 testing

METex14 skipping alterations by site and regions of interest for sequencing

- Underlying genomic events leading to *MET*ex14 are complex and diverse
- NGS assay characteristics and bioinformatics affect ability to detect
- Coexistence of *MET*ex14 with other oncogenic drivers is rare

A) Amplicon-based and B) hybrid capture-based DNA NGS methods for targeted sequencing of *MET*


MET, mesenchymal-epithelial transition; *MET*ex14, *MET* exon 14 skipping; mRNA, messenger RNA; NGS, next-generation sequencing. Socinski MA, et al. *Precision Oncology. Epub* April 13, 2021: DOI <u>https://doi.org/10.1200/PO.20.00516</u>. Figures reproduced with permission.

DNA- versus RNA-based NGS testing for MET

RNA-based testing can augment DNA-based testing

- Targeted DNA-based NGS techniques can reliably detect oncogenic kinase fusions, including ALK, RET, ROS1 and METex14 skipping mutations
- Targeted RNA-based NGS can complement large panel DNAbased NGS testing and increase detection

Benaved R, et al. Clin Cancer Res. 2019;25:4712–22

Incremental benefit of targeted RNA-seq in the identification of gene fusions in patients with DNA-seq driver-negative lung cancers

Rearrangement	Matched therapy	Best response ^b
EML4-ALK	Alectinib	SD
CD74-ROS1	Entrectinib	SD
SQSTM1-NTRK3	Larotrectinib	PR ^c
STRNO-NTRK2	Larotrectinib	SD
CD74-ROS1	Entrectinib	PR ^c
CD74-NRG1	Afatinib	SD
METex14	Crizotinib	SD
SLC34A2-ROS1	Crizotinib	PD
SLC34A2-ROS1	Crizotinib	SD
SDC4-NRG1	Afatinib	PD

Clinical benefit of matched

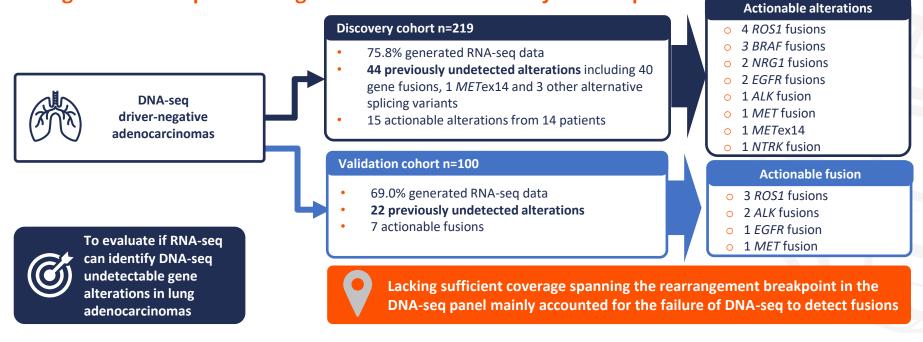
targeted therapy (n=10)

^aMSK-IMPACT: a large panel, hybrid capture-based NGS assay designed to capture common kinase fusions; ^bResponse assessment by RECIST version 1.1.; ^cConfirmed PR.

ALK, anaplastic lymphoma kinase; DNA-seq, DNA sequencing; MET, mesenchymal-epithelial transition; METex14, MET exon 14 skipping mutation;

MSK-Fusion, Memorial Sloan Kettering RNA-based solid tumour fusion panel; NGS, next-generation sequencing; NRG1, neuregulin 1; PD, progression of disease;

PR, partial response; RECIST, Response Evaluation Criteria In Solid Tumours; *RET*, rearranged during transfection; RNA-seq, RNA sequencing; *ROS1*, reactive oxygen species 1; SD. stable disease.


RESPIRATORY®

Do data presented at ASCO 2021 further support the use of RNA-sequencing for *MET*ex14 testing?

ASCO 2021: DNA versus RNA sequencing

Targeted RNA-seq identifies gene fusions undetected by DNA-seq

ALK, anaplastic lymphoma kinase; ASCO, American Society of Clinical Oncology; *BRAF*, B-rapidly accelerated fibrosarcoma; DNA-seq, DNA sequencing; *EGFR*, epidermal growth factor receptor; *MET*, mesenchymal-epithelial transition; *MET*ex14, *MET* exon 14 skipping mutation; *NRG1, neuregulin 1; NTRK1/2/3*; neurotrophic tyrosine receptor kinase 1/2/3; RNA-seq, RNA sequencing; *ROS1*, reactive oxygen species 1. Zhao R et al. *J Clin Oncol*.2021;39:suppl 15; abstract 3052.

What are the pros and cons of using tissue versus liquid biopsy for testing?

Tissue vs liquid biopsy in clinical practice

Tissue biopsy^{1–3}

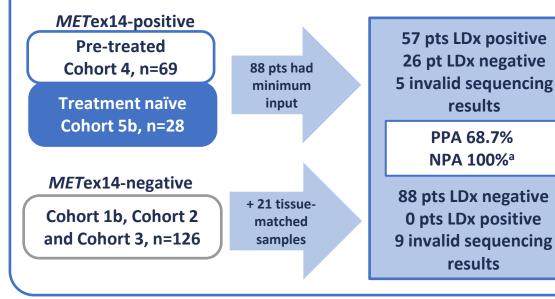
- Clinically validated gold standard
- Invasive; potential for bleeding and infection
- Difficult to repeat/obtain adequate samples
- Single-tissue site biopsies may not reflect genetic heterogeneity
- Impractical for periodic monitoring of treatment response
- Not all patients suitable for biopsy

Liquid (plasma ctDNA) biopsy^{1–3}

- Non-invasive; able to perform in clinic
- An alternative when tissue biopsy is insufficient or unfeasible
- Reflects tumour heterogeneity; assesses
 DNA from all tumour sites
- Can obtain serial samples at diagnosis and at required resistance of monitoring
- Some tumours may not shed ctDNA
- A negative result will need to be confirmed by tissue biopsy

ctDNA, circulating tumour DNA.

1. Lim M, et al. Micromachines. 2018;9:100; 2. Pennell NA, et al. Am Soc Clin Oncol Educ Book. 2019;39:531–42; 3. Rolfo C, et al. J Thorac Oncol. 2018;13:1248–68.


How do data presented at ASCO 2021 expand our knowledge on the role of liquid biopsy in *MET*ex14 NSCLC?

• ASCO 2021: Liquid biopsy in *MET*ex14 NSCLC

GEOMETRY mono-1

Comparison of LDx using plasma samples vs patients screened for *MET*ex14 status by RT-PCR clinical trial assay

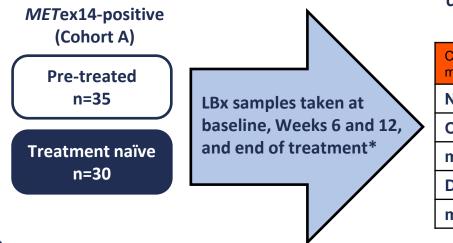
Pts identified by positive LDx

ORR, 48.8%; mDOR, 9.8 mo; mPFS, 5.4 mo; mOS, 13.6 mo

ORR, 81.3%; mDOR, 20.3 mo; mPFS, 12.4 mo; mOS, 17.9 mo

Clinical findings in *MET*ex14 pts identified by LDx comparable to patients identified by CTA

^aExcluding LDx invalid results


ASCO, American Society of Clinical Oncology; CTA, clinical trial assay; LDx, liquid biopsy test; mDOR, median duration of response; METex14, MET exon 14 skipping mutation; mo, months; mOS, median overall survival; mPFS, median progression-free survival; NPA, negative percent agreement; NSCLC, non-small cell lung cancer; ORR, overall response rate; PPA, positive percent agreement; pts, patients; RT-PCR, reverse transcriptase-polymerase chain reaction. Heist RS, et al. *J Clin Oncol.* 2021;39:suppl 15; abstract 9111.

• ASCO 2021: Serial liquid biopsy in *MET*ex14 NSCLC

VISION¹

Use of serial LBx to monitor treatment response/non-response in *MET*exon14 skipping NSCLC

ctDNA depletion in *MET*ex14-VAF associated with improved clinical response to tepotinib

Molecular response	Molecular progression
46	5
35 (76)	0
14	n/a
42 (91)	3 (60)
11	5.5
	response 46 35 (76) 14 42 (91)

*Analyzed using Guardant360[®] CDx (73 genes).

ASCO, American Society of Clinical Oncology; ctDNA, circulating tumour DNA; DCR, disease control rate; LBx, liquid biopsy; mDOR, median duration of response; METex14, MET exon 14 skipping mutation; mo, months; mPFS, median progression-free survival; NSCLC, non-small cell lung cancer; ORR, overall response rate; VAF, variant allele frequency.

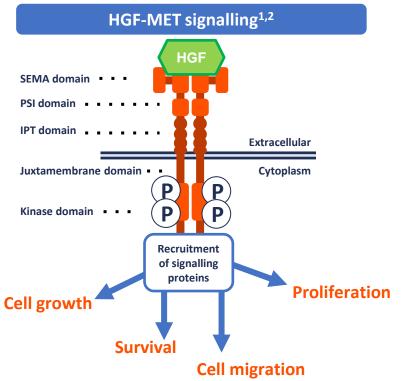
Paik P, et al. J Clin Oncol. 2021;39:suppl 15; abstract 9012.

What are the key takeaways from ASCO 2021 for NSCLC testing?

Adverse event management and implementation of MET inhibitor therapy

Dr Takashi Seto

Medical Oncologist National Kyushu Cancer Center Fukuoka, Japan



What are common adverse events associated with MET inhibitors in patients with METex14 NSCLC?

Targeting the HGF-MET signalling pathway

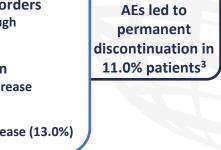
AEs caused by MET inhibition may be associated with the biological functions of MET³

- HGF and MET are broadly expressed in epithelial cells of many organs, playing essential physiological roles
- HGF-MET is responsible for the defensive physiological response to tissue damage and has cytoprotective activity
- MET targeted therapy may block these important physiological functions, causing increased patient susceptibility to tissue damage

AE, adverse event; HGF, hepatocyte growth factor; IPT, immunoglobulin-plexins-transcription factors; MET, mesenchymal-epithelial transition; P, phosphorylated; PSI, plexins-semaphorins-integrins; SEMA, semaphorins.

1. Lee D, et al. ImmunoTargets Ther. 2015;4:35; 2. Tan AC, et al. Lung Cancer (Auckl). 2021;12:11–20; 3. Hu CT, et al. Cancers. 2017;9:58.

Common AEs associated with approved MET inhibitors


Tepotinib VISION^{1,2} **General disorders Peripheral oedema** Fatigue/decreased appetite Pain GI disorders Nausea/vomiting Diarrhoea **Respiratory disorders** AEs led to Pleural effusion permanent ILD (2.2%) discontinuation in **Kidney function** 11.0% patients¹ Creatinine increase Liver function AST/ALT increase (13.0%)

GEOMETRY mono-1^{3,4} General disorders • Peripheral oedema • Fatigue • Decreased appetite GI disorders • Nausea/vomiting Respiratory disorders • Dyspnoea, cough • ILD (4.5%) Kidney function • Creatinine increase

Capmatinib

St.

Liver function
• AST/ALT increase (13.0%)

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GI, gastrointestinal; ILD, interstitial lung disease; MET, mesenchymal-epithelial transition; PI, prescribing information.

1. Paik PK, et al. *N Engl J Med.* 2020;383:931–43; 2. Tepotinib PI 2020. Available at: www.accessdata.fda.gov/drugsatfda_docs/label/2021/214096s000lbl.pdf (accessed 5 May 2021); **RESPIRATORY**® 3. Wolf J, et al. *N Engl J Med.* 2020;383:944–57; 4. Capmatinib PI. 2020. Available at: www.accessdata.fda.gov/drugsatfda_docs/label/2020/213591s000lbl.pdf (accessed 5 May 2021).

How are adverse events associated with MET inhibitors managed in clinical practice?

• AE management with approved MET inhibitors

Prophylactic and supportive measures based on experiences from clinical trials¹⁻⁴

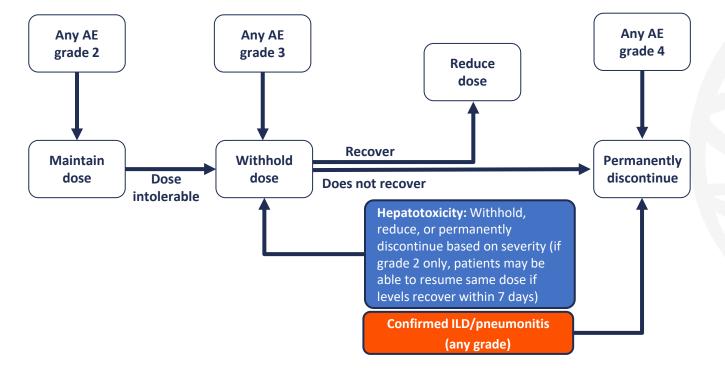
Űÿ	Peripheral oedema ^{1,2}	Monitor regularly: early detection is key Patients advised to increase movement, elevate limbs (consider compression stockings) and diuretics. Consider dose reduction	
<u></u>	GI symptoms ^{1,2}	Ensure adequate hydration and monitor for dehydration Consider standard antiemetics and anti-diarrhoeals or treatment interruption. Consider premedication with 5-HT3 antagonist	
	ILD ² Pleural effusion ²	Monitor for ILD symptoms (e.g. dyspnoea, cough, fever) Interrupt treatment if ILD suspected/discontinue if confirmed Perform thoracentesis to rule out malignant cause	
Æ	Creatinine increase ²	Monitor levels during first 2 months of therapy If creatinine increase grade ≥3, reduce dose or interrupt treatment	
R.	Liver enzyme increase ^{2–4}	Monitor ALT/AST prior to start and every 2 weeks during first 3 months, then once a month If symptoms continue, consider dose reduction or interruption	

DOSE MODIFICATION AND INTERRUPTION Reduce dose, withhold or permanently discontinue

Increasing severity

AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GI, gastrointestinal; ILD, interstitial lung disease; MET, mesenchymal-epithelial transition.

1. Goodwin K, et al. J Thorac Oncol. 2021;16:S16–7; 2. Alexander T, et al. InONS 46th Annual Congress 2021 Mar 1. ONS;


3. Tepotinib PI 2020. Available at: www.accessdata.fda.gov/drugsatfda_docs/label/2021/214096s000lbl.pdf (accessed 5 May 2021);

4. Capmatinib PI. 2020. Available at: www.accessdata.fda.gov/drugsatfda_docs/label/2020/213591s000lbl.pdf (accessed 5 May 2021).

Recommended dose modifications

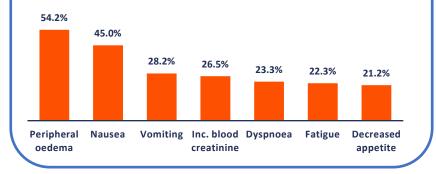
MET inhibitor safety recommendations: Capmatinib and tepotinib^{1,2}

AE, adverse event; ILD, interstitial lung disease; MET, mesenchymal-epithelial transition.

1. Tepotinib Prescribing Information. 2020. Available at: www.accessdata.fda.gov/drugsatfda_docs/label/2021/214096s000lbl.pdf (accessed 5 May 2021);

2. Capmatinib Prescribing Information. 2020. Available at: www.accessdata.fda.gov/drugsatfda_docs/label/2020/213591s000lbl.pdf (accessed 5 May 2021).

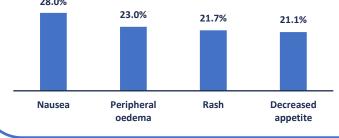
What were the key safety data updates for MET inhibitors at ASCO 2021, either as monotherapy or in combination with an EGFR inhibitor?


ASCO 2021: Safety of MET inhibitors in NSCLC

Capmatinib monotherapy and in combination with EGFR-TKI

GEOMETRY mono-1 Updated results¹

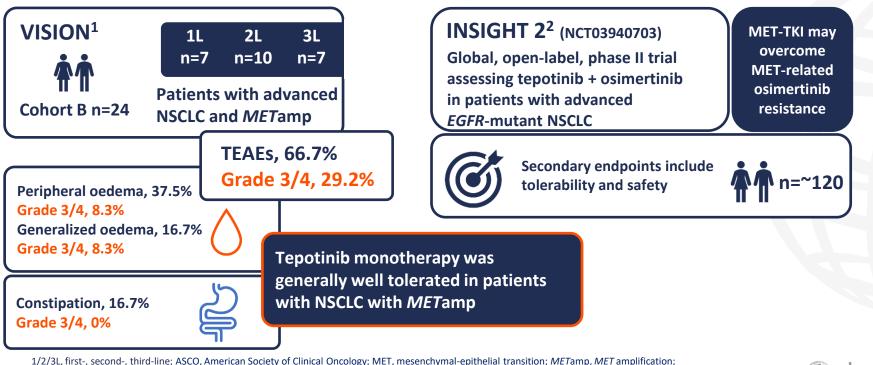
*MET*ex14 NSCLC (n=373) Updated safety: All cohorts


- 98.4% of patients reported AEs (grade 3/4, 68.6%)
- 16.1% reported AEs leading to discontinuation
- Most common AEs (any grade; ≥20%):

Capmatinib + gefitinib (NCT01610336)²

EGFR-mutant and *MET*-dysregulated NSCLC (n=161) Primary findings from the phase lb/ll study 98.8% of patients reported AEs (87.0% TEAEs)

- Grade 3/4 TEAEs: 31.7% of patients across both phases Most frequent reported (≥5%): increased amylase (6.2%), increased lipase (6.2%) and peripheral oedema (5.0%)
- Most common TEAEs (any grade; ≥20%):



AE, adverse event; ASCO, American Society of Clinical Oncology; EGFR, epidermal growth factor; Inc., increased; MET, mesenchymal-epithelial transition; *MET*ex14, *MET* exon 14 skipping; NSCLC, non-small cell lung cancer; TEAE, treatment-emergent adverse event; TKI, tyrosine kinase inhibitor. 1. Wolf J, et al. *J Clin Oncol.* 2021;39:suppl 15; abstr 9020; 2. Wu YL, et al. *J Clin Oncol.* 2021;39:suppl 15; abstr 9048.

• ASCO 2021: Safety of MET inhibitors in NSCLC

Tepotinib monotherapy and in combination with EGFR-TKI

1/2/3L, first-, second-, third-line; ASCO, American Society of Clinical Oncology; MET, mesenchymal-epithelial transition; *MET*amp, *MET* amplification; NSCLC, non-small cell lung cancer; TEAE, treatment-emergent adverse event; TKI, tyrosine kinase inhibitor.
Le X, et al. J Clin Oncol. 2021;39:suppl 15; abstr 9021; 2. Zhu VW, et al. J Clin Oncol. 2021;39:suppl 15; abstr TPS9136.

Is the risk:benefit profile for the use of immunotherapy acceptable in METex14 NSCLC?

ASCO 2021: Immunotherapy in MET-positive NSCLC

Relationship between *MET*ex14 NSCLC and ICI therapy

Multicentre study: ICI and MET-TKI sequencing¹

43 patients with *MET* alterations; *MET*ex14 (n=29) 69% of patients had PD-L1 ≥50%

- 85.7% patients experienced a grade ≥3 AE, resulting in permanent discontinuation of TKI in half of patients
- Increased toxicity when a TKI is used after ICI; careful monitoring is necessary

Identifying which patients may benefit most from ICI²

N=385 ICI-treated NSCLC patients:

- MET mutations, 4.4%
- *MET*ex14, 2.6%
- *MET*-non-ex14, 1.8%

MET-non-ex14 mutations associated with higher TMB and improved DCB rate

TMB potential prognostic biomarker in patients with NSCLC treated with ICIs²

AE, adverse event; ASCO, American Society of Clinical Oncology; DCB, durable clinical benefit; ICI, immune checkpoint inhibitor; MET, mesenchymal-epithelial transition; METex14, MET exon 14 skipping mutation; NSCLC, non-small cell lung cancer; PD-L1, programmed death ligand 1; TKI, tyrosine kinase inhibitor; TMB, tumour mutational burden. 1. Lau SCM, et al. J Clin Oncol. 2021;39:suppl 15; abstr e21123; 2. Li X, et al. J Clin Oncol. 2021;39:suppl 15; abstr e21032.