touchPANEL DISCUSSION®

# Targeting IL-1β in NSCLC: What does the future hold?



### Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions
- The presenting faculty have been advised by touchIME to ensure that they disclose any such references made to unlabelled or unapproved use
- No endorsement by touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in touchIME activities
- touchIME accepts no responsibility for errors or omissions









### Dr Pilar Garrido

Associate Professor of Medical Oncology, University of Alcalá, Head of Thoracic Tumours Section, University Hospital Ramón y Cajal, Madrid, Spain

#### Dr Barbara Melosky

Professor of Medicine, University of British Columbia, Medical Oncologist, BC Cancer, Vancouver, Canada

#### Dr Alastair Greystoke

Clinical Senior Lecturer and Honorary Consultant, Sir Bobby Robson Clinical Trials Unit, Freeman Hospital, Newcastle upon Tyne, UK

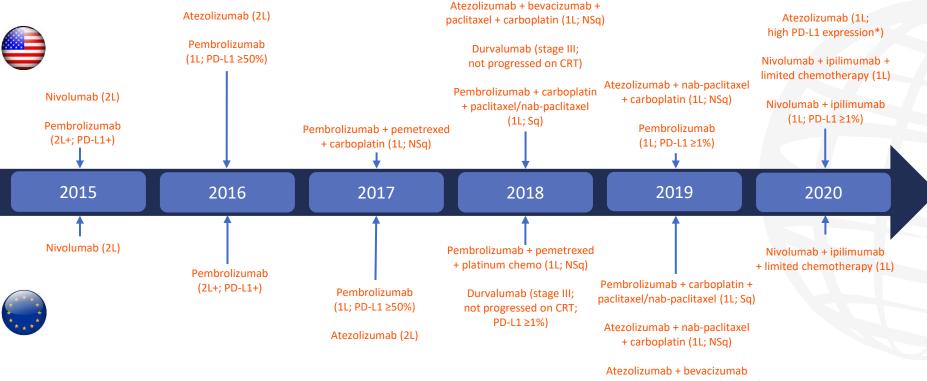




### Immunotherapy for NSCLC today: Where are we?

## What is the rationale for targeting IL-1 $\beta$ in NSCLC and which agents are currently in clinical development?

How could IL-1 $\beta$  inhibition be implemented in the management of NSCLC?




IL-1β, interleukin-1 beta; NSCLC, non-small cell lung cancer.





### • Immune checkpoint blockade therapy for NSCLC



+ paclitaxel + carboplatin (1L; NSq)

\*PD-L1 stained ≥50% of tumour cells or PD-L1 stained tumour-infiltrating immune cells covering ≥10% of the tumour area.

1L, first line; 2L, second line; CRT, chemoradiotherapy; NSCLC, non-small cell lung cancer; NSq, non-squamous; PD-L1, programmed death-ligand 1; Sq, squamous. Approval information available at: U.S. Food & Drug Administration <u>www.fda.gov</u> and European Medicines Agency <u>www.ema.europa.eu</u>.



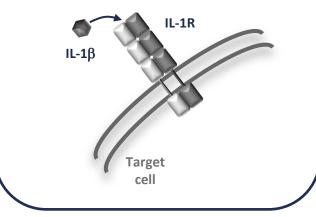
### <sup>•</sup> 5-year survival with ICI monotherapy in advanced NSCLC

| Trial                              | Checkpoint<br>inhibitor | Prior treatment                       | PD-L1<br>expression | Number of patients | 5-year OS<br>(%) |
|------------------------------------|-------------------------|---------------------------------------|---------------------|--------------------|------------------|
| CA209-003 <sup>1</sup>             | Nivolumab               | Previously treated                    | Any                 | 129                | 16               |
| CheckMate 057 + 017 <sup>2–4</sup> | Nivolumab               | Previously treated                    | Any                 | 427                | 13.4             |
| KEYNOTE-001 <sup>5</sup>           | Pembrolizumab           | Previously treated<br>Treatment naïve | Any<br>TPS ≥1%      | 449<br>101         | 15.5<br>23.2     |
| KEYNOTE-024 <sup>6</sup>           | Pembrolizumab           | Treatment naïve                       | TPS ≥50%            | 154                | 31.9             |

ICIs provide long-term OS benefit and durable responses with a tolerable safety profile, but only in a subset of patients

ICI, immune checkpoint inhibitor; NSCLC, non-small cell lung cancer; OS, overall survival; PD-L1, programmed death-ligand 1; TPS, tumour proportion score. 1. Gettinger S, et al. *J Clin Oncol.* 2018;36:1675–84; 2. Borghaei H, et al. *J Clin Oncol.* 2021;JCO2001605. doi:10.1200/JCO.20.01605 (Online ahead of print); 3. Brahmer J, et al. *N Engl J Med.* 2015;373:123–35; 4. Borghaei H, et al. *N Engl J Med.* 2015.373:1627–39; 5. Garon E, et al. *J Clin* Oncol. 2019;37:2518–27; 6. Brahmer JR, et al. *Ann Oncol.* 2020;31(Suppl. 4):S1142–215.






### What is the rationale for targeting IL-1β in NSCLC and which agents are currently in clinical development?



### <sup>•</sup> IL-1β as a target for immunotherapy

IL-1 $\beta$  is a pro-inflammatory cytokine which binds to IL-1R1 on the surface of target cells<sup>1</sup>



Mechanisms by which IL-1β drives tumourigenesis include:

- Modulation of epithelial-mesenchymal transition<sup>1</sup>
- Tumour growth, invasiveness, metastasis and angiogenesis<sup>1</sup>
- Apoptosis resistance<sup>1</sup>
- Promotion of an immunosuppressive tumour microenvironment<sup>2</sup>





### <sup>•</sup> IL-1-targeting agents under investigation for cancer

| Agent                                 | Mechanism of action                          | Trial phase | Tumour site                                                       |  |
|---------------------------------------|----------------------------------------------|-------------|-------------------------------------------------------------------|--|
| Anakinra <sup>1</sup>                 | Recombinant IL-1Ra                           | I           | Relapsed or refractory<br>advanced cancers                        |  |
| Canakinumab <sup>2–5</sup>            | mAb directed against IL-1 $\beta$            | 11,111      | NSCLC                                                             |  |
| CAN04 <sup>6,7</sup><br>(nidanilimab) | mAb against the IL-1R accessory protein      | I,II        | Solid tumours, including NSCLC                                    |  |
| Gevokizumab <sup>8,9</sup>            | Allosteric mAb directed against IL-1 $\beta$ | I           | Metastatic colorectal,<br>gastro-oesophageal and<br>renal cancers |  |
| Isunakinra <sup>10</sup>              | IL-1β/IL-1Ra fusion protein                  | I           | Metastatic or unresectable advanced solid tumours                 |  |

IL-1 $\beta$ , interleukin-1 beta; IL-1Ra, interleukin-1 receptor antagonist; IL-1R, interleukin-1 receptor; mAb, monoclonal antibody; NSCLC, non-small cell lung cancer.

1. NCT01624766; 2. NCT03447769; 3. NCT03968419; 4. NCT03631199; 5. NCT03626545; 6. NCT04452214; 7. NCT03267316; 8. NCT03798626;

9. Issafras H, et al. J Pharmacol Exp Ther. 2014;348:202–159; 10. NCT04121442.

Clinical trial information available from clinical trials.gov (accessed 2 February 2021).



### How can IL-1β inhibition be implemented in the management of NSCLC?



# Clinical trials exploring drugs targeting IL-1β for the treatment of NSCLC

#### Monotherapy

- Canakinumab vs placebo<sup>1</sup> (NCT03447769; CANOPY-A; adjuvant)
- Canakinumab vs pembrolizumab vs both<sup>2</sup> (NCT03968419; CANOPY-N; neoadjuvant)
- Isunakinra<sup>3</sup> (NCT04121442; dose study; ≥1 prior line of therapy)

#### + chemo

- Canakinumab + docetaxel vs docetaxel alone<sup>4</sup> (NCT03626545; CANOPY-2; prior platinum chemotherapy and PD-(L)1 inhibitor)
- CAN04 + cisplatin, gemcitabine, or nab-paclitaxel<sup>5</sup> (NCT03267316; CANFOUR; first or second line)

#### + chemo + checkpoint inhibitor

 Canakinumab + chemo+ pembrolizumab vs chemo + pembrolizumab<sup>6</sup> (NCT03631199; CANOPY-1; first line)

#### + checkpoint inhibitor

 CAN04 + pembrolizumab<sup>7</sup> (NCT04452214; progression on PD-(L)1 inhibitor-containing regimens)

#### + mTOR kinase inhibitor

 Everolimus plus anakinra vs everolimus or denosumab<sup>8</sup> (NCT01624766; relapsed/refractory disease)

Chemo, chemotherapy; IL-1β, interleukin-1 beta; NSCLC, non-small lung cancer; mTOR, mechanistic target of rapamycin. 1. NCT03447769; 2. NCT03968419; 3. NCT04121442; 4. NCT03626545; 5. NCT03267316; 6. NCT03631199; 7. NCT04452214; 8. NCT01624766. Clinical trial information available from clinicaltrials.gov (accessed 2 February 2021).

