touchEXPERT OPINIONS

New frontiers in NSCLC immunotherapy

NSCLC, non-small cell lung carcinoma.

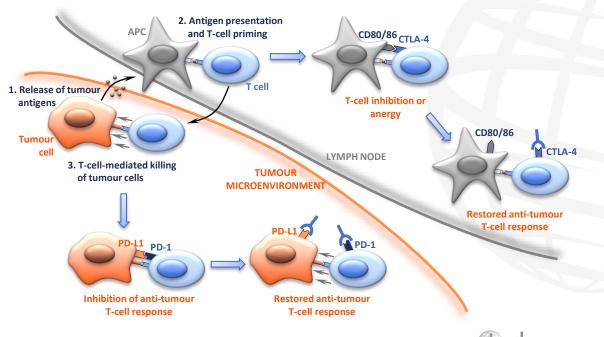
Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions.
- The presenting faculty have been advised by touchIME to ensure that they disclose any such references made to unlabelled or unapproved use.
- No endorsement by touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in touchIME activities.
- touchIME accepts no responsibility for errors or omissions.

Assessing the future of immunotherapy in lung cancer

Dr Marina Garassino

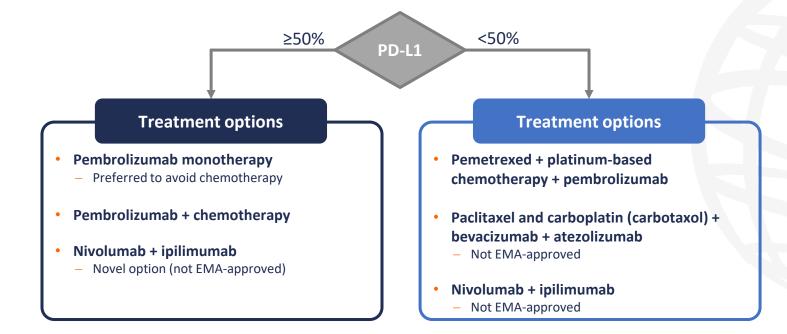
Head of the Thoracic Oncology Unit, National Cancer Institute of Milan, Milan, Italy


Anti-tumour immunity^{1–3}

PD-L1, PD-1 and CTLA-4

Tumour immune escape and checkpoint inhibitors

- PD-1 and CTLA-4 are immunoregulatory receptors expressed on T lymphocytes
- Engagement of CTLA-4 by CD80/86 and of PD-1 by PD-L1 suppress T-cell responses to prevent immune-mediated tissue damage
 - The PD-1/PD-L1 and CTLA-4 pathways contribute to tumour immune escape and
 can be targeted by immunotherapy


Target	Drugs
PD-1	Nivolumab, pembrolizumab, cemiplimab
PD-L1	Atezolizumab, avelumab, durvalumab
CTLA-4	Ipilimumab

RESPIRATORY®

APC, antigen-presenting cell; CD, cluster of differentiation; CTLA-4, cytotoxic T lymphocyte antigen-4; PD-1, programmed death-1; PD-L1, programmed death-ligand-1. 1. Kim HC, et al. *Tuberc Respir Dis*. 2020;83:14–9; 2. Seidel JA, et al. *Front Oncol*. 2018;8:1–14; 3. Katoh M. *J Thorac Dis*. 2018;10:5178–83.

Use of checkpoint inhibitors in the treatment of advanced (stage 4) NSCLC^{1,2}

Limitations of current immunotherapeutic approaches for advanced stage NSCLC

Unreliable predictive biomarker

Atezolizumab (BIRCH - NCT02031458)¹

Treatment-naïve patients

- OS=23.5 months (total)
- OS=26.9 months (PD-L1>50%)

Nivolumab plus ipilimumab (Checkmate227 - NCT02477826)²

- Nivolumab + ipilimumab: OS=17.1 months
- Chemotherapy: OS=13.9 months

Resistance to PD-L1/PD-1 blockade

Multiple mechanisms of primary or acquired resistance^{3,4}

- Low antigen levels or lack of antigen presentation
- Other immune checkpoints
- Immune suppressive cells

NSCLC, non-small-cell lung carcinoma; OS, overall survival; PD-L1, programmed death-ligand-1. 1. Peters S, et al. J Clin Oncol. 2017;35:2781–9; 2. Hellmann MD, et al. N Engl J Med. 2019;381:2020–31; 3. Sharma P, et al. Cell. 2017;168:707–23; 4. Character de Service Letter Letter Description (2014) 142.

Chocarro de Erauso L, et al. Front Pharmacol. 2020;11:1–13.

The future of immunotherapy for NSCLC

Use of checkpoint inhibitors for NSCLC in earlier disease stages¹

 Ongoing clinical trials for adjuvant anti-PD-1/PD-L1 in resected stage IB–IIIA NSCLC as a maintenance after adjuvant chemotherapy, either alone or combined with radiotherapy

Molecular targets other than immune checkpoints^{2,3}

- Adenosine pathway
- Angiogenesis pathways
- Trp-kyn-aryl hydrocarbon receptor pathway
- PI3K/AKT/mTOR pathway
- Tumour-associated macrophages
- Inflammatory mediators (IL-1)

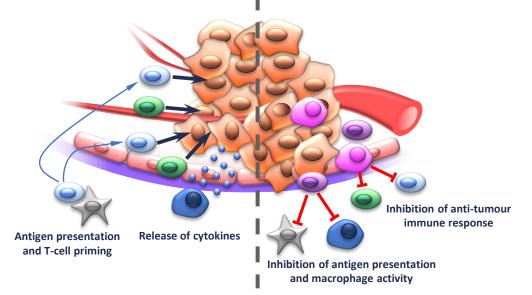
AKT, protein kinase B; IL-1, interleukin-1; mTOR, mammalian target of rapamycin; NSCLC, non-small-cell lung carcinoma; PD-1, programmed death-1; PD-L1, programmed death-ligand-1; PI3K, phosphoinositide 3-kinases.

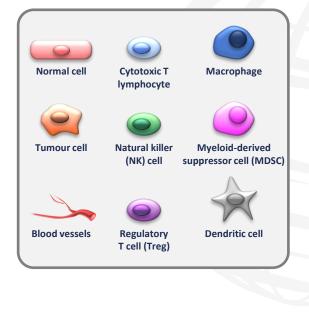
1. Indini A, et al. J Thorac Dis. 2020;12:3390-8; 2. Giannone G, et al. Int J Mol Sci. 2020;21:1-22; 3. Gottschlich A, et al. Transl Lung Cancer Res. 2018;7:S160-4.

Untapped potential in the tumour microenvironment

Prof. Sebastian Kobold

Professor of Medicine and Experimental Immunooncology, Ludwig-Maximilians-University of Munich, Munich, Germany


The tumour microenvironment¹⁻⁴


Anti-tumour immune response

Under physiological conditions, immune cells within the microenvironment limit the establishment of the primary tumour

Immune evasion

During tumour progression, changes in the local milieu affect the phenotype of surrounding cells, which inhibit effective immune responses against the tumour

The tumour immune cycle^{1,2}

APC, antigen-presenting cell; CD, cluster of differentiation; CTL, cytotoxic T lymphocyte. 1. Kim HC, Choi C-M. *Tuberc Respir Dis.* 2020;83:14–9; 2. Pio R, et al. *Front. Immunol.* 2019;10:774.

Immunotherapy targets within the tumour immune cycle

PD-1/PD-L1

Tumour cells upregulate PD-L1 in response to IFN- γ . PD-L1 binding to PD-1 on T cells causes T-cell apoptosis, anergy and exhaustion. ^1-3

LAG-3

LAG-3 is expressed on both Treg and anergic CD4 T helper cells. LAG-3 binds MHC class II and inhibits CD4 T-cell activation.⁴

TGF-β

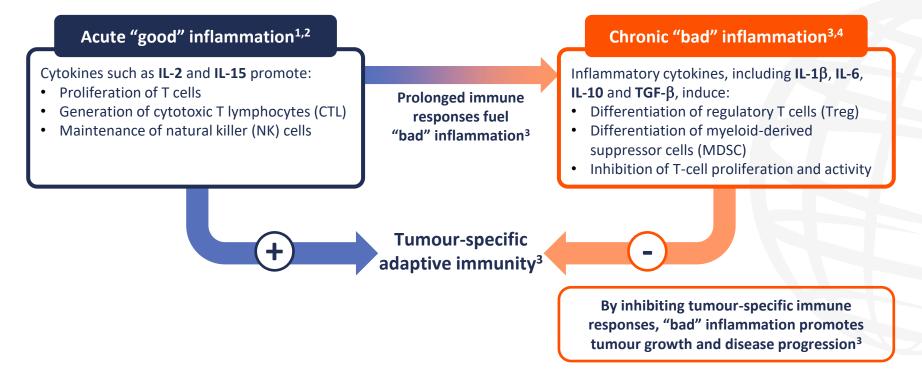
TGF- β signalling in the tumour microenvironment is a determinant of tumour T-cell exclusion and poor response to PD-1/PD-L1 blockade. 6

CTLA-4

CTLA-4 is expressed by Tregs and can be upregulated by T cells. CTLA-4 dampens immune responses against infections and tumours.³

IL-1β

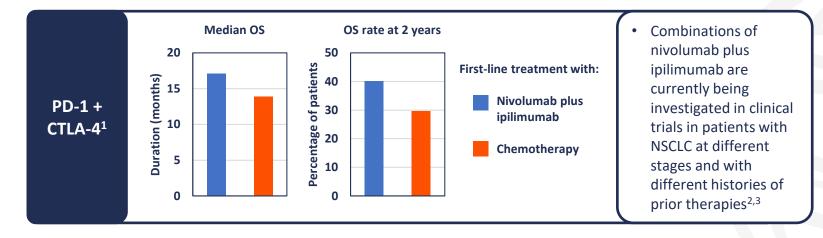
Overexpression of IL-1 β increases inflammationassociated tumour invasiveness and favours cell proliferation and angiogenesis.⁵


CCL21

CCL21 is a chemokine which promotes immune cell localization in the tumour microenvironment.⁷

CCL21, C-C chemokine motif ligand 21; CD, cluster of differentiation; CTLA-4, cytotoxic T lymphocyte antigen 4; IFN-γ, interferon-γ IL-1β, interleukin-1 beta; LAG, lymphocyte activation gene; MHC, major histocompatibility complex; PD-1, programmed death-1; PD-L1, programmed death-ligand-1; TGF-β, transforming growth factor beta; Treg, regulatory T cell. 1. Pio R, et al. *Front. Immunol.* 2019;10:774; 2. Zou W, et al. *Sci Transl Med.* 2016;8:328rv4; 3. Seidel JA, et al. *Front Oncol.* 2018;8:1–14; 4. He Y, et al. *Cancer Sci.* 2016;107:1193–7; 5. Garon EB, et al. *JTO Clin Res Reports.* 2020;1:100001; 6. Ganesh K, et al. *Immunity.* 2018;48:626–8; 7. Tang H, et al. *Cancer Lett.* 2016;370:85–90.

"Good" and "bad" inflammation


1. Waldmann TA. Cancer Immunol Res. 2015;3:219–27; 2. Zhang C, Liu Y. Front Immunol. 2020;11:1–20; 3. Wang D, DuBois RN. Carcinogenesis. 2015;36:1085–93;

4. Mantovani A, et al. Immunol Rev. 2018;281:57-61.

Emerging immunotherapeutic targets in NSCLC

Cell-associated targets

• A phase II trial assessing the effect of LAG-3 blockade in combination with pembrolizumab in NSCLC is currently recruiting (TACTI-002 study, NCT03625323)

CTLA-4, cytotoxic T lymphocyte antigen 4; LAG-3, lymphocyte activation gene 3; NSCLC, non-small cell lung carcinoma; OS, overall survival; PD-1, programmed death-1. 1. Hellmann MD, et al. *N Engl J Med*. 2019;381:2020–3; 2. Remon J, et al. *Cancer Manag Res*. 2019;11:4893–904; 3. Kooshkaki O, et al. *Int J Mol Sci*. 2020;21:4427; 4. NCT03625323. Clinical trials listed by their identifiers at: ClinicalTrials.gov (accessed 17 August 2020).

Emerging immunotherapeutic targets in NSCLC

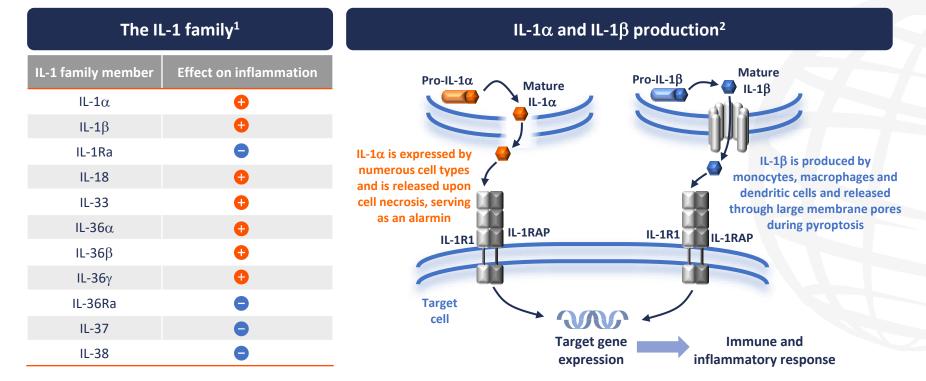
Soluble targets

TGF-β

• The phase I/II trial NCT02581787 is assessing the effect of inhibition in combination with radiotherapy in early NSCLC¹

In a phase III trial on cardiovascular risk (CANTOS, NCT01327846), inhibition of the IL-1β pathway reduced the incidence of lung cancer and lung cancer mortality^{2,3} Multiple phase III trials are assessing IL-1β blockade in patients with NSCLC⁴

Is IL-1 the key to progress in solid tumours?


Prof. Fabrice Barlesi

Professor of Medicine, Head of Medical and Clinical Research, Gustave Roussy, Villejuif, France

IL-1 family proteins and their function

IL-1, interleukin-1; IL-1α, interleukin-1 alpha; IL-1β, interleukin-1 beta; IL-1R1, interleukin-1 receptor 1; IL-1Ra, interleukin-1 receptor antagonist; IL-1RAP, interleukin-1 receptor accessory protein; IL-1R3, interleukin-1 receptor 3; IL-18, interleukin-18; IL-33, interleukin-33; IL-36α, interleukin-36 alpha; IL-36β, interleukin-36 beta; IL-36γ, interleukin-36 gamma; IL-37, interleukin-37; IL-38, interleukin-38.

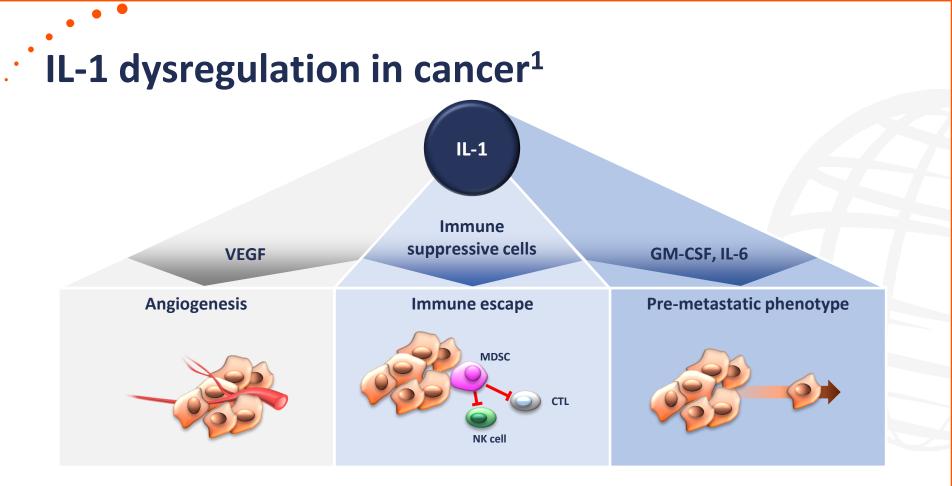
1. Dinarello CA. Immunol Rev. 2018;281:8–27; 2. Garon EB, et al. JTO Clin Res Reports. 2020;1:100001.

IL-1 dysregulation in cancer^{1–3}

Effect on tumour: Evidence in:	
Angiogenesis Fibrosarcoma, lu melanoma, brea	ung cancer, pancreatic cancer, ast cancer
Dedifferentiation Breast cancer	
	squamous cell carcinoma,
metastasis gastric cancer, p lung cancer, colo	ancreatic cancer, breast cancer, orectal cancer
Proliferation Pancreatic cance	er, breast cancer, fibrosarcoma
Tumour-promoting Pancreatic cance inflammation	er, fibrosarcoma
TME modulation Breast cancer	
Pro-	

Antitumourigenic

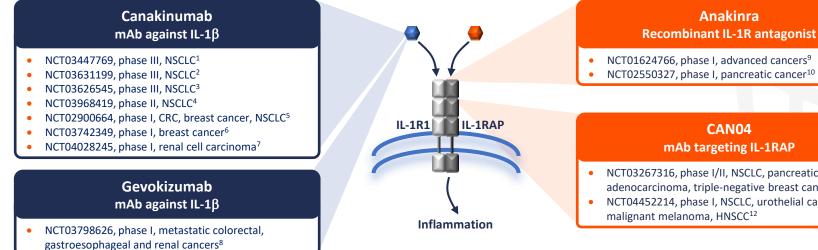
Evidence in:


Breast cancer

Fibrosarcoma, lymphoma, B-cell myeloma

Breast cancer, melanoma, prostate cancer

IL-1, interleukin-1; IL-1α, interleukin-1 alpha; IL-1β, interleukin-1 beta; TME, tumour microenvironment.
 Van Gorp H, Lamkanfi M. *EMBO Rep.* 2019;20:1–15; 2. Garon EB, et al. *JTO Clin Res Reports*. 2020;1:100001; 3. Baker KJ, et al. *Front Immunol*. 2019;10:1197.



CTL, cytotoxic T lymphocyte; GM-CSF, granulocyte-macrophage colony-stimulating factor; IL-1, interleukin-1; IL-6, interleukin-6; MDSC, myeloid-derived suppressor cell; NK, natural killer; VEGF, vascular endothelial growth factor. 1. Van Gorp H, Lamkanfi M. *EMBO Rep.* 2019;20:1–15.

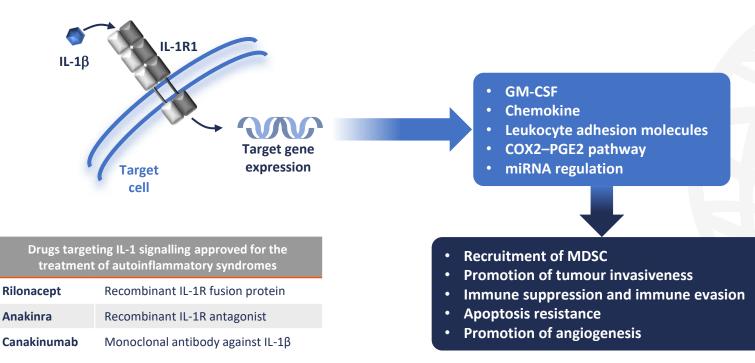
Investigational drugs targeting IL-1 for the treatment of solid tumours

Drugs inhibiting IL-1 β signalling

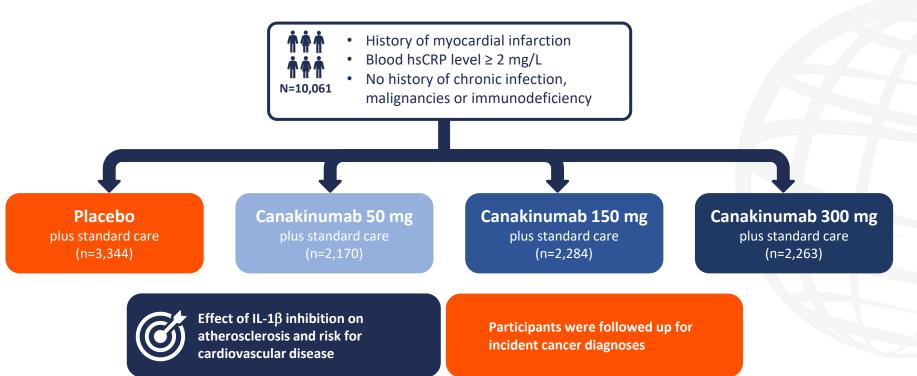
Drugs inhibiting IL-1 α and IL-1 β signalling

IL-1RAP, interleukin-1 receptor accessory protein; mAb, monoclonal antibody; NSCLC, non-small cell lung carcinoma. 1. NCT03447769; 2. NCT03631199; 3. NCT03626545; 4. NCT03968419; 5. NCT02900664; 6. NCT03742349; 7. NCT04028245; 8. NCT03798626; 9. NCT01624766; 10. NCT02550327; 11. NCT03267316; 12. NCT04452214. Clinical trials listed by their identifiers at: ClinicalTrials.gov (accessed 25 August 2020).

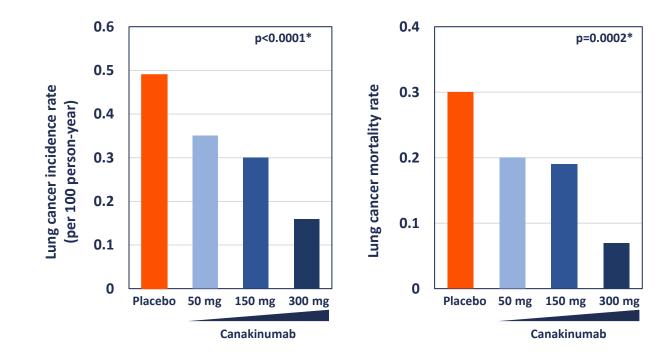
IL-1β as a future option for NSCLC immunotherapy


Dr Edward Garon

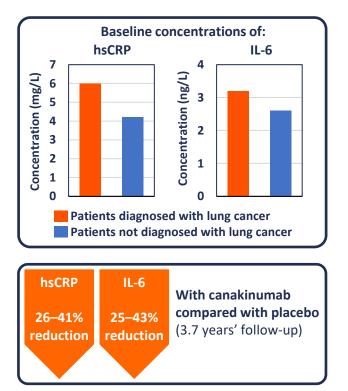
Professor of Medicine and Director of the Thoracic Oncology Program, David Geffen School of Medicine, University of California, Los Angeles, CA, USA

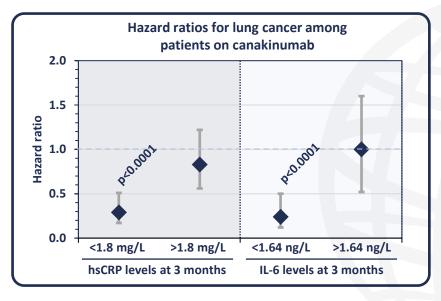

IL-1 β as a target for immunotherapy¹

COX2, cyclooxygenase 2; IL-1β, interleukin-1 beta; IL-1R, interleukin-1 receptor; GM-CSF, granulocyte-macrophage colony-stimulating factor MDSC, myeloid-derived suppressor cells; miRNA, micro ribonucleic acid; PGE2, prostaglandin E2. 1. Garon EB, et al. *JTO Clin Res Reports*. 2020;1:100001.



CANTOS: Study design¹


CANTOS: Clinical outcomes¹



Canakinumab could reduce incident lung cancer and lung cancer mortality

CANTOS: Biomarkers analyses¹

The benefit of canakinumab on lung cancer was observed only in patients with low plasma levels of hsCRP and IL-6

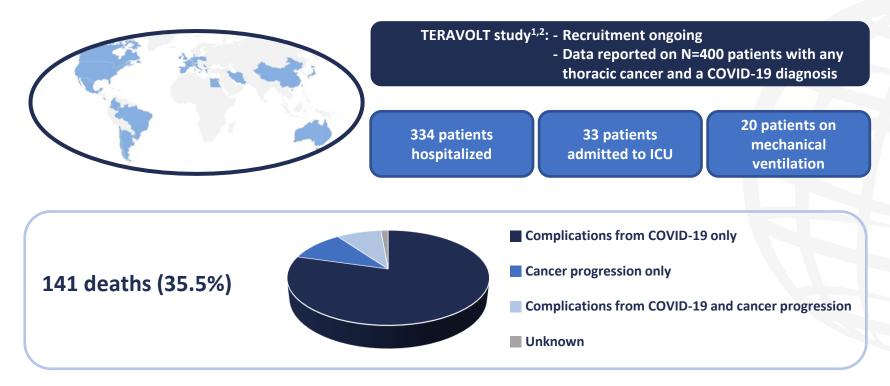
Clinical trials testing IL-1 β inhibition in NSCLC

	CANOPY-A ¹	CANOPY-1 ²	CANOPY-2 ³
	Phase III	Phase III	Phase III
	NCT03447769	NCT03631199	NCT03626545
Ê Î Î	 N=1,500 (estimated; recruiting) Stages II–IIIA and IIIB, completely resected NSCLC 	 N=673 (actual; not recruiting) Advanced or metastatic NSCLC No prior treatment 	 N=245 (actual; not recruiting) NSCLC Prior treatment with PD-1 or PD-L1 inhibitors and Pt-chemo
ist.	Canakinumab as adjuvant therapy	Canakinumab + pembro + Pt-chemo	Canakinumab + docetaxel
	VS	VS	VS
	Placebo	Placebo + pembro + Pt-chemo	Placebo + docetaxel
	Early stage clinical trials		
	CANOPY-N ⁴	CANFOUR ⁵	CAN04CLIN002 ⁶
	Phase II	Phase I/II	Phase I
	NCT03968419	NCT03267316	NCT04452214
	 Early stage NSCLC Canakinumab alone or in combination with pembro 	 Solid tumours, including NSCLC CAN04 (mAb against IL-1RAP) alone or in combination with chemotherapy 	 Solid tumours, including NSCLC CAN04 (mAb against IL-1RAP) in combination with pembro

IL-1β, interleukin-1 beta; IL-1RAP, interleukin-1 receptor accessory protein; mAb, monoclonal antibody; NSCLC, non-small cell lung carcinoma; pembro, pembrolizumab; PD-1, programmed death-1; PD-L1, programmed death-ligand-1; Pt-chemo, platinum-based chemotherapy.

1. NCT03447769; 2. NCT03631199; 3. NCT03626545; 4. NCT03968419; 5. NCT03267316; 6. NCT04452214. Clinical trials listed by their identifiers at: ClinicalTrials.gov (accessed 03 September 2020).

COVID-19 and lung cancer management


Dr Marina Garassino

Head of the Thoracic Oncology Unit, National Cancer Institute of Milan, Milan, Italy

Impact of COVID-19 on lung cancer patients

COVID-19, coronavirus disease 2019; ICU, intensive care unit; TERAVOLT, Thoracic Cancers International COVID-19 Collaboration. 1. Garassino MC, et al. *Lancet Oncol.* 2020;21:914–22; 2. Horn L, et al. Presented at the ASCO20 Virtual Meeting, 2020 [Abstract LBA111].

Risk factors for COVID-19-related death

•

	Patients with thoracic cancer (TERAVOLT) ¹	General population (UK data) ²
Older age (≥65 years old)		
Gender (male)	×	
Comorbidities		
Ethnicity (black/south Asian)	×	
Smoking	×	Not assessed
ECOG performance status		Not applicable
Stage of cancer	×	Not applicable

COVID-19, coronavirus disease 2019; ECOG, Eastern Cooperative Oncology Group; TERAVOLT, Thoracic Cancers International COVID-19 Collaboration. 1. Horn L, et al. . Presented at the ASCO20 Virtual Meeting, 2020 [Abstract LBA111]; 2. Williamson EJ, et al. *Nature*. 2020. doi: 10.1038/s41586-020-2521-4 [Online ahead of print].

COVID-19 and care of patients with lung cancer

Guidelines to minimize contact while preserving a high standard of care^{1–3}

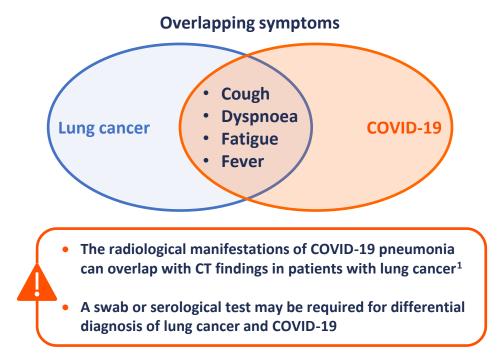
Hospital visits

- Avoid if unnecessary
- Use telemedicine and phone consultation when possible

Treatment

- Use schedules which reduce hospital time
- Delay treatment if the benefit for the patient is uncertain

Screening


- Deferred during the pandemic
- When restarting, screenings should be considered on a patient-by-patient basis

COVID-19, coronavirus disease 2019.

1. European Society for Medical Oncology. ESMO management and treatment adapted recommendations in the COVID-19 era: lung cancer. Available at: www.esmo.org/guidelines/cancer-patientmanagement-during-the-covid-19-pandemic/lung-cancer-in-the-covid-19-era (accessed on 26 August 2020); 2. British Thoracic Society. Lung cancer and mesothelioma service guidance during the COVID-19 pandemic, available at: www.brit-thoracic.org.uk/document-library/quality-improvement/covid-19/lung-cancer-pathway-guidance-covid-19/ (accessed 26 August 2020); 3. Mori M, et al. *Surg Today*. 2020;50:794–808.

COVID-19 and imaging for lung cancer^{1–4}

ESMO, European society for medical oncology; COVID-19, coronavirus disease 2019; CT, computed tomography.

1. Calabrò L, et al. *Lancet Respir Med.* 2020;8:542–4; 2. European Society for Medical Oncology. ESMO management and treatment adapted recommendations in the COVID-19 era: lung cancer. Available at: www.esmo.org/guidelines/cancer-patient-management-during-the-covid-19-pandemic/lung-cancer-in-the-covid-19-era (accessed 26 August 2020); 3. British Thoracic Society. Differentiation of the Cs in lung cancer: Cancer vs. COVID. Available at www.btog.org/latest/covid-19-information-for-thoracic-oncology-healthcare-professionals/ (accessed 26 August 2020); 4. Pasikhova Y, et al. *Cancer Control.* 2017;24:193–7.

Lung cancer management after COVID-19

Telemedicine may be used after the pandemic to limit unnecessary hospital visits

- Need to consider accessibility to the internet and necessary technology, particularly for elderly patients
- The median age of lung cancer patients at diagnosis is around 70 years old

New guidelines will need to consider the potential impact of chemotherapy on COVID-19

 Prior administration of chemotherapy is associated with increased risk of death, while immunotherapy or TKI are not¹

