touchEXPERT OPINIONS

New frontiers in NSCLC immunotherapy

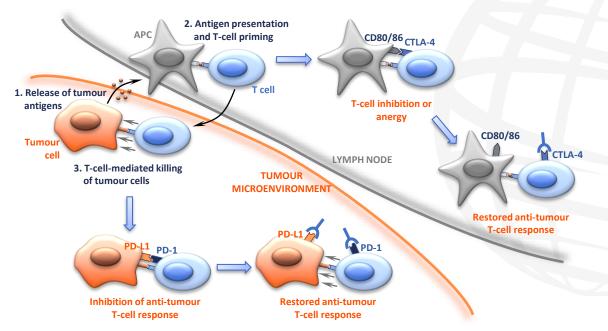
Disclaimer

- Unapproved products or unapproved uses of approved products may be discussed by the faculty; these situations may reflect the approval status in one or more jurisdictions.
- The presenting faculty have been advised by touchIME to ensure that they disclose any such references made to unlabelled or unapproved use.
- No endorsement by touchIME of any unapproved products or unapproved uses is either made or implied by mention of these products or uses in touchIME activities.
- touchIME accepts no responsibility for errors or omissions.

Assessing the future of immunotherapy in lung cancer

Dr Marina Garassino

Head of the Thoracic Oncology Unit, National Cancer Institute of Milan, Milan, Italy


Anti-tumour immunity^{1–3}

PD-L1, PD-1 and CTLA-4

- PD-1 and CTLA-4 are immunoregulatory receptors expressed on T lymphocytes
- Engagement of CTLA-4 by CD80/86 and of PD-1 by PD-L1 suppress T-cell responses to prevent immune-mediated tissue damage
 - The PD-1/PD-L1 and CTLA-4 pathways contribute to tumour immune escape and can be targeted by immunotherapy

Target	Drugs
PD-1	Nivolumab, pembrolizumab, cemiplimab
PD-L1	Atezolizumab, avelumab, durvalumab
CTLA-4	Ipilimumab

Tumour immune escape and checkpoint inhibitors

CPI in first-line treatment for advanced NSCLC

ESMO guidelines for patients without actionable oncogene driver

Pembrolizumab¹

- Monotherapy
- For tumours with PD-L1 level ≥50%
- In combination with pemetrexed and platinum-based chemotherapy
- In combination with carboplatin and paclitaxel or nab-paclitaxel

Atezolizumab¹

- In combination with bevacizumab, paclitaxel and carboplatin
- In combination with nab-paclitaxel and carboplatin
- In combination with pemetrexed and platinum-based chemotherapy (not EMA approved)

Nivolumab + ipilimumab¹

 In patients with high TMB (not EMA approved)

Limitations of current immunotherapeutic approaches for advanced stage NSCLC

Unreliable predictive biomarker

- PD-L1 may be a suboptimal marker to predict immunotherapy efficacy in NSCLC¹
- Evaluation of the primary studies for 45 FDA approvals of CPI across 15 tumour types found that PD-L1 was predictive of response in <30% of cases²

Resistance to PD-L1/PD-1 blockade

Multiple mechanisms of primary or acquired resistance^{3,4}

- Low antigen levels or lack of antigen presentation
- Other immune checkpoints
- Immune suppressive cells

The future of immunotherapy for NSCLC

Use of checkpoint inhibitors for NSCLC in earlier disease stages¹

 Ongoing clinical trials for adjuvant anti-PD-1/PD-L1 in resected stage IB-IIIA NSCLC as a maintenance after adjuvant chemotherapy, either alone or combined with radiotherapy

Molecular targets other than immune checkpoints^{2,3}

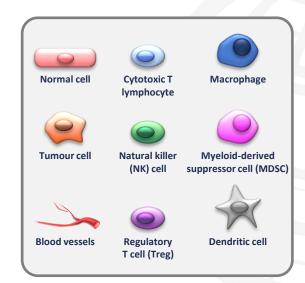
- Adenosine pathway
- Angiogenesis pathways
- Trp–kyn–aryl hydrocarbon receptor pathway
- PI3K/AKT/mTOR pathway
- Tumour-associated macrophages
- Inflammatory mediators (IL-1)

Untapped potential in the tumour microenvironment

Prof. Sebastian Kobold

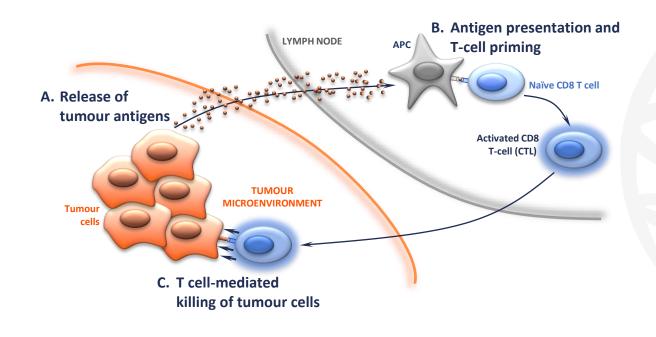
Professor of Medicine and Experimental Immunooncology, Ludwig-Maximilians-University of Munich, Munich, Germany


The tumour microenvironment^{1–4}


Anti-tumour immune response

Under physiological conditions, immune cells within the microenvironment limit the establishment of the primary tumour

Immune evasion


During tumour progression, changes in the local milieu affect the phenotype of surrounding cells, which inhibit effective immune responses against the tumour

The tumour immune cycle^{1,2}

Immunotherapy targets within the tumour immune cycle

PD-1/PD-L1

Tumour cells upregulate PD-L1 in response to IFN- γ . PD-L1 binding to PD-1 on T cells causes T-cell apoptosis, anergy and exhaustion. ^{1–3}

LAG-3

LAG-3 is expressed on both Treg and anergic CD4 T helper cells. LAG-3 binds MHC class II and inhibits CD4 T-cell activation.⁴

TGF-β

TGF- β signalling in the tumour microenvironment is a determinant of tumour T-cell exclusion and poor response to PD-1/PD-L1 blockade.⁶

CTLA-4

CTLA-4 is expressed by Tregs and can be upregulated by T cells. CTLA-4 dampens immune responses against infections and tumours.³

IL-1β

Overexpression of IL-1 β increases inflammation-associated tumour invasiveness and favours cell proliferation and angiogenesis.⁵

CCL21

CCL21 is a chemokine which promotes immune cell localization in the tumour microenvironment.⁷

"Good" and "bad" inflammation

Acute "good" inflammation^{1,2}

Cytokines such as **IL-2** and **IL-15** promote:

- Proliferation of T cells
- Generation of cytotoxic T lymphocytes (CTL)
- Maintenance of natural killer (NK) cells

Prolonged immune responses fuel "bad" inflammation³

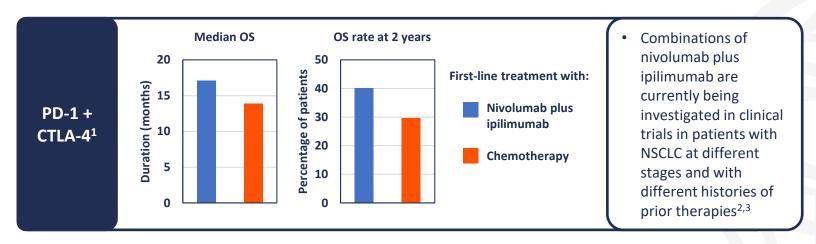
Chronic "bad" inflammation^{3,4}

Inflammatory cytokines, including **IL-1** β , **IL-6**, **IL-10** and **TGF-** β , induce:

- Differentiation of regulatory T cells (Treg)
- Differentiation of myeloid-derived suppressor cells (MDSC)
- Inhibition of T-cell proliferation and activity

Tumour-specific adaptive immunity³

By inhibiting tumour-specific immune responses, "bad" inflammation promotes tumour growth and disease progression³


^{1.} Waldmann TA. Cancer Immunol Res. 2015;3:219–27; 2. Zhang C, Liu Y. Front Immunol. 2020;11:1–20; 3. Wang D, DuBois RN. Carcinogenesis. 2015;36:1085–93;

Mantovani A, et al. Immunol Rev. 2018;281:57–61.

Emerging immunotherapeutic targets in NSCLC

Cell-associated targets

LAG-3⁴

• A phase II trial assessing the effect of LAG-3 blockade in combination with pembrolizumab in NSCLC is currently recruiting (TACTI-002 study, NCT03625323)

^{1.} Helimann MJ, et al. N Engl J Med. 2019;381:2020–3; 2. Remon J, et al. Cancer Manag Res. 2019;11:4893–904; 3. Koosnkaki O, et al. Int J Mol Sci. 2020;21:442

Emerging immunotherapeutic targets in NSCLC

Soluble targets

TGF-β

• The phase I/II trial NCT02581787 is assessing the effect of inhibition in combination with radiotherapy in early NSCLC¹

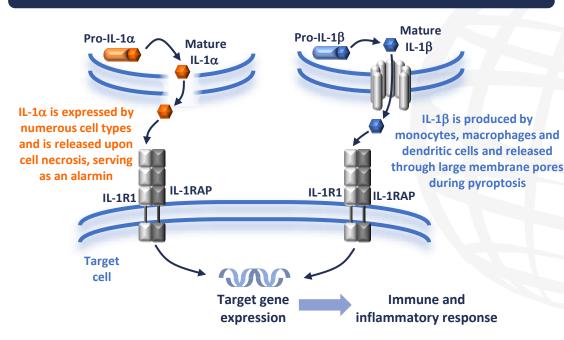
IL-1β

- In a phase III trial on cardiovascular risk (CANTOS, NCT01327846), inhibition of the IL-1β pathway reduced the incidence of lung cancer and lung cancer mortality^{2,3}
- Multiple phase III trials are assessing IL-1β blockade in patients with NSCLC⁴

Is IL-1 the key to progress in solid tumours?

Prof. Fabrice Barlesi

Professor of Medicine, Head of Medical and Clinical Research, Gustave Roussy, Villeiuif. France



IL-1 family proteins and their function

The IL-1 family¹

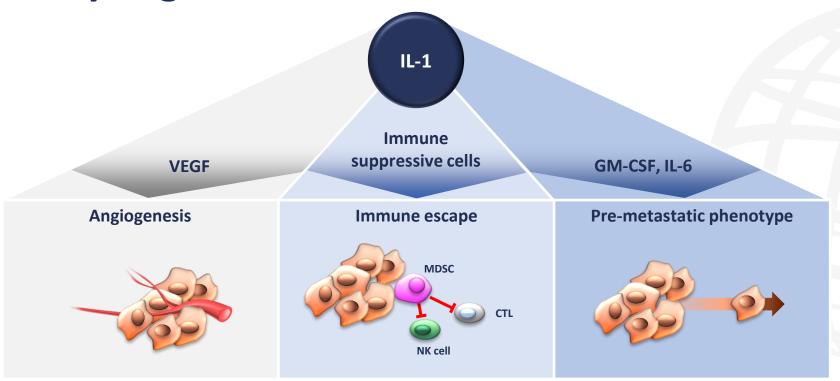
IL-1 family member	Effect on inflammation
IL-1α	•
ΙΙ-1β	•
IL-1Ra	
IL-18	•
IL-33	•
IL-36 α	⊕
IL-36β	•
IL-36γ	•
IL-36Ra	
IL-37	•
IL-38	

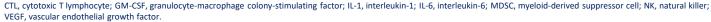
IL-1 α and IL-1 β production²

IL-1, interleukin-1; IL-1α, interleukin-1 alpha; IL-1β, interleukin-1 beta; IL-1R1, interleukin-1 receptor 1; IL-1Ra, interleukin-1 receptor antagonist; IL-1RAP, interleukin-1 receptor accessory protein; IL-1R3, interleukin-1 receptor 3; IL-18, interleukin-18; IL-33, interleukin-36 alpha; IL-36β, interleukin-36 beta; IL-36γ, interleukin-36 gamma; IL-37, interleukin-37; IL-38, interleukin-38.

IL-1 dysregulation in cancer¹⁻³

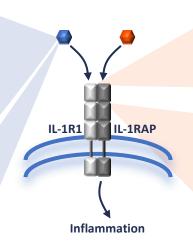
Effect on tumour:	Evidence in:
Angiogenesis	Fibrosarcoma, lung cancer, pancreatic cancer, melanoma, breast cancer
Dedifferentiation	Breast cancer
Invasion and metastasis	Head and neck squamous cell carcinoma, gastric cancer, pancreatic cancer, breast cancer, lung cancer, colorectal cancer
Proliferation	Pancreatic cancer, breast cancer, fibrosarcoma
Tumour-promoting inflammation	Pancreatic cancer, fibrosarcoma
TME modulation	Breast cancer


Effect on tumour:	Evidence in:
Immune cell recruitment	Fibrosarcoma, lymphoma, B-cell myeloma
Proliferation	Breast cancer, melanoma, prostate cancer
Metastasis	Breast cancer


Protumourigenic Antitumourigenic

IL-1 dysregulation in cancer¹

Investigational drugs targeting IL-1 for the treatment of solid tumours


Drugs inhibiting IL-1β signalling

Canakinumab mAb against IL-1β

- NCT03447769, phase III, NSCLC¹
- NCT03631199, phase III, NSCLC²
- NCT03626545, phase III, NSCLC³
- NCT03968419, phase II, NSCLC⁴
- NCT02900664, phase I, CRC, breast cancer, NSCLC⁵
- NCT03742349, phase I, breast cancer⁶
- NCT04028245, phase I, renal cell carcinoma⁷

Gevokizumab mAb against IL-1β

 NCT03798626, phase I, metastatic colorectal, gastroesophageal and renal cancers⁸

Drugs inhibiting IL-1 α and IL-1 β signalling

Anakinra Recombinant IL-1R antagonist

- NCT01624766, phase I, advanced cancers⁹
- NCT02550327, phase I, pancreatic cancer¹⁰

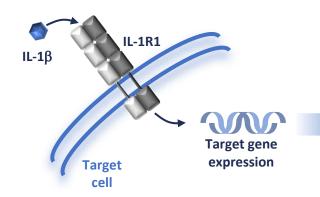
CAN04 mAb targeting IL-1RAP

- NCT03267316, phase I/II, NSCLC, pancreatic ductal adenocarcinoma, triple-negative breast cancer, CRC¹¹
- NCT04452214, phase I, NSCLC, urothelial carcinoma, malignant melanoma, HNSCC¹²

CRC, colorectal cancer; HNSCC, head and neck non-squamous cell carcinoma; IL-1, interleukin-1; IL-1α, interleukin-1 alpha; IL-1β, interleukin-1 beta; IL-1R, interleukin-1 receptor; IL-1RAP, interleukin-1 receptor accessory protein; mAb, monoclonal antibody; NSCLC, non-small cell lung carcinoma.

1. NCT03447769; 2. NCT03631199; 3. NCT03626545; 4. NCT03968419; 5. NCT02900664; 6. NCT03742349; 7. NCT04028245; 8. NCT03798626; 9. NCT01624766; 10. NCT02550327; 11. NCT03267316; 12. NCT04452214. Clinical trials listed by their identifiers at: ClinicalTrials.gov (accessed 25 August 2020).

IL-1β as a future option for NSCLC immunotherapy


Dr Edward Garon

Professor of Medicine and Director of the Thoracic Oncology Program, David Geffen School of Medicine, University of California, Los Angeles, CA, USA

IL-1β as a target for immunotherapy¹

GM-CSF

- Chemokine
- Leukocyte adhesion molecules
- COX2–PGE2 pathway
- miRNA regulation

Drugs targeting IL-1 signalling approved for the treatment of autoinflammatory syndromes

Rilonacept Recombinant IL-1R fusion protein

Anakinra Recombinant IL-1R antagonist

Canakinumab Monoclonal antibody against IL-1\(\beta \)

- Recruitment of MDSC
- Promotion of tumour invasiveness
- Immune suppression and immune evasion
- Apoptosis resistance
- Promotion of angiogenesis

COX2, cyclooxygenase 2; IL-1β, interleukin-1 beta; IL-1R, interleukin-1 receptor; GM-CSF, granulocyte-macrophage colony-stimulating factor MDSC, myeloid-derived suppressor cells; miRNA, micro ribonucleic acid; PGE2, prostaglandin E2.

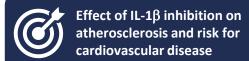
CANTOS: Study design¹

- History of myocardial infarction
- Blood hsCRP level ≥ 2 mg/L
- No history of chronic infection, malignancies or immunodeficiency

Placebo

plus standard care (n=3,344)

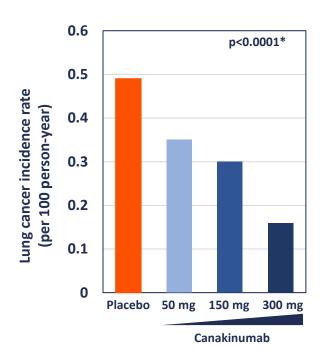
Canakinumab 50 mg

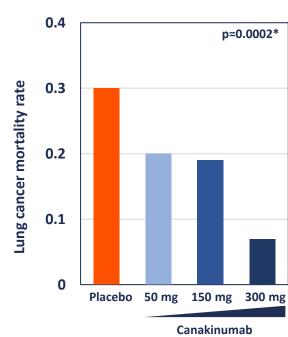

plus standard care (n=2,170)

Canakinumab 150 mg

plus standard care (n=2,284)

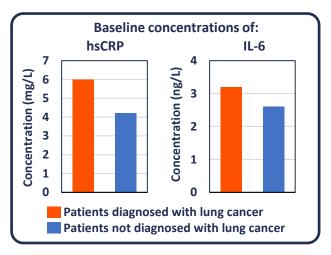
Canakinumab 300 mg

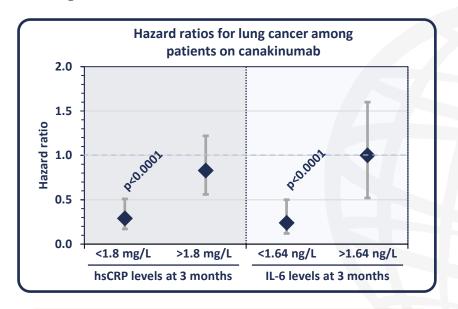

plus standard care (n=2,263)



Participants were followed up for incident cancer diagnoses

CANTOS: Clinical outcomes¹




Canakinumab could reduce incident lung cancer and lung cancer mortality

CANTOS: Biomarkers analyses¹

The benefit of canakinumab on lung cancer was observed only in patients with low plasma levels of hsCRP and IL-6

Clinical trials testing IL-1 β inhibition in NSCLC

CANOPY-A ¹ Phase III NCT03447769	CANOPY-1 ² Phase III NCT03631199	CANOPY-2 ³ Phase III NCT03626545
N=1,500 (estimated; recruiting) Stages II–IIIA and IIIB, completely	N=673 (actual; not recruiting) Advanced or metastatic NSCLC	 N=245 (actual; not recruiting) NSCLC

- resected NSCLC
- No prior treatment

 Prior treatment with PD-1 or PD-L1 inhibitors and Pt-chemo

Canakinumab as adjuvant therapy

VS Placebo Canakinumab + pembro + Pt-chemo

Placebo + pembro + Pt-chemo

Canakinumab + docetaxel

Placebo + docetaxel

Early stage clinical trials

CANOPY-N ⁴ Phase II NCT03968419	CANFOUR ⁵ Phase I/II NCT03267316	CAN04CLIN002 ⁶ Phase I NCT04452214
Early stage NSCLCCanakinumab alone or in combination with pembro	 Solid tumours, including NSCLC CAN04 (mAb against IL-1RAP) alone or in combination with chemotherapy 	 Solid tumours, including NSCLC CAN04 (mAb against IL-1RAP) in combination with pembro

COVID-19 and lung cancer management

Dr Marina Garassino

Head of the Thoracic Oncology Unit, National Cancer Institute of Milan, Milan, Italy

Impact of COVID-19 on lung cancer patients

TERAVOLT study^{1,2}: - Recruitment ongoing

 Data reported on N=400 patients with any thoracic cancer and a COVID-19 diagnosis

334 patients hospitalized

33 patients admitted to ICU

20 patients on mechanical ventilation

Risk factors for COVID-19-related death

	Patients with thoracic cancer (TERAVOLT) ¹	General population (UK data) ²
Older age (≥65 years old)	✓	
Gender (male)	×	
Comorbidities		
Ethnicity (black/south Asian)	×	
Smoking	×	Not assessed
ECOG performance status		Not applicable
Stage of cancer	×	Not applicable

COVID-19 and care of patients with lung cancer

Guidelines to minimize contact while preserving a high standard of care¹⁻³

Hospital visits

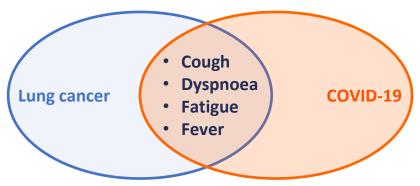
- Avoid if unnecessary
- Use telemedicine and phone consultation when possible

Treatment

- Use schedules which reduce hospital time
- Delay treatment if the benefit for the patient is uncertain

Screening

- Deferred during the pandemic
- When restarting, screenings should be considered on a patient-by-patient basis


COVID-19, coronavirus disease 2019.

1. European Society for Medical Oncology. ESMO management and treatment adapted recommendations in the COVID-19 era: lung cancer. Available at: www.esmo.org/guidelines/cancer-patient-management-during-the-covid-19-pandemic/lung-cancer-in-the-covid-19-era (accessed on 26 August 2020); 2. British Thoracic Society. Lung cancer and mesothelioma service guidance during the COVID-19 pandemic, available at: www.brit-thoracic.org.uk/document-library/quality-improvement/covid-19/lung-cancer-pathway-guidance-covid-19/ (accessed 26 August 2020); 3. Mori M. et al. Sura Today. 2020:50:794–808.

COVID-19 and imaging for lung cancer^{1–4}

Overlapping symptoms

- The radiological manifestations of COVID-19 pneumonia can overlap with CT findings in patients with lung cancer¹
- A swab or serological test may be required for differential diagnosis of lung cancer and COVID-19

ESMO, European society for medical oncology; COVID-19, coronavirus disease 2019; CT, computed tomography.

1. Calabrò L, et al. *Lancet Respir Med*. 2020;8:542–4; 2. European Society for Medical Oncology. ESMO management and treatment adapted recommendations in the COVID-19 era: lung cancer. Available at: www.esmo.org/guidelines/cancer-patient-management-during-the-covid-19-pandemic/lung-cancer-in-the-covid-19-era (accessed 26 August 2020); 3. British Thoracic Society. Differentiation of the Cs in lung cancer: Cancer vs. COVID. Available at www.btog.org/latest/covid-19-information-for-thoracic-oncology-healthcare-professionals/ (accessed 26 August 2020); 4. Pasikhova Y. et al. *Cancer Control*. 2017;24:193–7.

Lung cancer management after COVID-19

Telemedicine may be used after the pandemic to limit unnecessary hospital visits

- Need to consider accessibility to the internet and necessary technology, particularly for elderly patients
- The median age of lung cancer patients at diagnosis is around 70 years old

New guidelines will need to consider the potential impact of chemotherapy on COVID-19

 Prior administration of chemotherapy is associated with increased risk of death, while immunotherapy or TKI are not¹

