Chronic Obstructive Pulmonary Disease—A Disease of Accelerated Aging

An Expert Interview with Don D Sin

Division of Respiratory Medicine and Centre for Heart Lung Innovation, St Paul’s Hospital, University of British Columbia, Vancouver, BC, Canada

Don D Sin
Don Sin is Professor of Medicine at the University of British Columbia (UBC) and Director of the Centre for Heart Lung Innovation (HLI) at St. Paul’s Hospital in Vancouver, Canada. He holds a Tier 1 Canada Research Chair in Chronic Obstructive Pulmonary Disease (COPD) and the De Lazzari Family Endowed Chair at HLI. He has published over 450 papers on COPD. He is currently the Section Editor of COPD for the European Respiratory Journal and an Associate Editor of the Canadian Journal of Respiratory, Critical Care and Sleep Medicine. He is also a special advisor to BMB and sits on the editorial boards of the American Journal of Respiratory and Critical Care Medicine, Thorax and CHEST. He has been a member of the scientific committee of GOLD (Global Initiative for Chronic Obstructive Pulmonary Disease) since 2009. His research focus is using "omics" data to discover novel biomarkers of disease activity and new therapeutic targets to reduce hospitalization and mortality in patients with COPD.

Q. What were the findings of this study?

We tested the hypothesis that telomeres, which are easily measured in blood, are biomarkers (or surrogates) of aging in COPD and most importantly whether telomeres are associated with poor outcomes for COPD patients.1 We measured the telomere length of DNA extracted from blood samples taken from 576 patients with moderate-to-severe COPD who were participants in the Macrolide Azithromycin for Prevention of Exacerbations of COPD (MACRO) study (ClinicalTrials.gov: NCT00325897). These patients were treated with azithromycin or placebo for 12 months and all were followed initially for approximately 12 months, during which time their overall health status and COPD exacerbations were recorded. They were then followed for a further 29 months to assess mortality.5

Q. Could you tell us a little about your recent study investigating the utility of measuring telomere length in patients with COPD?

We found that even though the average age of the patients in our study was 66 years, their biological age based on telomeres was 15–20 years older (in their 80s). We also found that patients with short
telomeres, and thus of older biological age, were more likely to experience exacerbations and nine times more likely to die than those who had long telomeres (thus younger biological age).1

Q. What were the effects of azithromycin treatment on COPD patients with short telomeres?
The good news was that those patients who took azithromycin were protected from developing exacerbations when they had short telomeres.5

Q. What is likely to be the impact of these findings on COPD treatment and what further studies are planned?
We need to see whether these findings can be replicated in other settings. If we can reproduce these findings, we may be able to use blood telomeres, which are easy to measure as a simple blood test, to identify patients at high risk (biologically older) and place them on azithromycin to protect them against exacerbations.5